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Abstract

This paper offers a constructive proof of the Nash Bargaining solution. We

start by proving that Nashs solution is representable based on its continuity.

This property along with the linearity of the choice function will then allow us to

identify the function representing Nashs bargaining choice. Finally, supported

on the result for two players, we will generalize it to n-players.
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1 Introduction

The purpose of this paper is to present a constructive proof of the Nash bargaining

solution. While Nash (1950) defined axioms that a two-player bargaining should

respect and presented a solution, it is not clear from his paper why was that solution

chosen or how it came about. We will arrive to the result without guesses on the

shape of the bargaining solution, thus constructively bringing the initial axioms and

the final solution together.

Peters and Wakker (1991) showed that, under certain conditions, a (bargaining)

choice function can be the result of the ordering of well-behaved preferences. If it is
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Pareto optimal and continuous there is an equivalence between the choice function

being independent of irrelevant alternatives and being representable. That is, if the

choice is continuous, Pareto optimal and independent of irrelevant alternatives then

exists a function f , that can be interpreted as a social utility function, such that on

the set S the choice c(S) = arg maxs∈S f(s).

In order to prove that Nash’s solution is representable we will start by demonstrate

the continuity of the solution, as Pareto optimality and independence of irrelevant

alternatives are two of Nash’s axioms. In this process it will also be proved that the

function f must be quasi concave. And this property together with the linearity of

the choice function will allow us to discover that f(x, y) = xy. Finally, supported on

the result for two players, we will generalize it to n-players.

In the next section we present the notation and definitions that we will use

throughout the text. Then in section 3 we will prove that the Nash Bargaining

solution is representable. In section 4 we will then arrive at the function representing

the Nash’s bargaining choice, after which we will conclude.

2 Notation and Definitions

As most definitions and axioms we will common no justification or intuition will be

provided. A vector in R2
+ will be denoted by a bold letter usually x and its coordinates

by x = (x, y). The set of compact and convex sets of R2
+ is S. For a set S ∈ S, the ideal

value of S for the first player is S1 = max {x : ∃y ∈ R, (x, y) ∈ S}, S2 the ideal value

for player 2. S+ is the set of the compact and convex subsets of R2
+ with S1S2 > 0. A

set S ⊂ R2
+ is comprehensive if x ∈ S then x′ ∈ S for any x′ ≤ x. The comprehensive

hull of a set S ∈ S is comp(S) =
{
x′ : x′ ≤ x, for any x ∈ S

}
. For a comprehensive

S ∈ S+ the function gS : [0, S1] → [0, S2] defines the maximum value of y when the

first coordinate has value x, so (x, y) ∈ S if and only if y ≤ gS(x). The convexity

of S implies that gs is concave. The convex hull of S, ch(S) is the smallest convex

set that contains S. A set is symmetric if (x, y) ∈ S implies (y, x) ∈ S. An affine

transformation of x = (x, y) ∈ R2
+, for α = (α1, α2) ∈ R2

+ and β = (β1, β2) ∈ R2
+, is
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β + αx =
(
β1 + α1x, β2 + α2x

)
. An affine transformation of a set S is β + αS ={

β + αx : x ∈ S
}

. In the next section we need to use the affine transformation of

S that sends the point x ∈ S into x̃ ∈ R2
+ intensively, this will be denoted by S(x,x̃).

The proportion factor α is α = x̃
x

, then S(x,x̃) = αS = x̃
x
S =

(
x̃
x
, ỹ
y

)
S.

The bargaining problem is defined for pairs (S,d), in which S is convex and

compact set of possible utilities for the players, and it exists an x ∈ S such that

x� d. We will normalize the disagreement point to d = 0, this can be done without

loss of generality because of the affine transformation axiom we will just define.

Therefore, a bargaining game will, from now on, be defined just on the sets S ∈ S+.

The Nash bargaining solution is a function that to each bargaining problem S picks a

utility division c(S) ∈ S, and respects the following axioms: Pareto Optimality(PO),

for S ∈ S+,@x ∈ S \ c(S) : x ≥ c(S); Independence of Irrelevant Alternatives(IIA)

if S, S ′ ∈ S+ with S ′ ⊆ S and c(S) ∈ S ′ then c(S) = c(S ′); Symmetry (Sym), for

symmetric S ∈ S+, c(S)1 = c(S)2; Affine Transformations(AT), for S ∈ S+ and

α ∈ R2
+ the bargaining choice verifies c

(
αS) = αc(S).

3 The Bargaining Choice is Representable

The proof of the continuity of the choice function will be done by contradiction, assum-

ing that there is a convergent sequence of sets {Sk}, Sk → S, such that the bargaining

solution is not continuous c(Sk) 9 c(S). 1 If this is case, there is a sequence of conver-

gent comprehensive sets comp(Sk)→ comp(S) such that c
(
comp(Sk)

)
9 c

(
comp(S)

)
,

because c
(
comp(X)

)
= c(X) by PO and IIA. Hence, continuity of c can be studied

through comprehensive sets and in this section, even if not clearly mentioned, sets

are comprehensive.

We will prove that if the solution c was not continuous, there would be a set S ′

1The distance between two points is d(x,x′) = max
{
|x − x′|, |y − y′|

}
; the distance from a set

to point is d(x, S′) = infx′∈S′ d(x,x′); and the Hausdorff distance between two sets is

d(S, S′) = max
{

sup
x∈S

d(x, S′), sup
x′∈S

d(x′, S)
}

.

3



with the bargaining solution c(S ′) belonging to the interior of some Sk, being therefore

worse than c(Sk); and c(Sk) belonging to the interior of S ′ and so worse than c(S ′),

thus creating a contradiction with IIA. The set S ′, that will be used to show this

contradiction, is an affine transformation of S, one that changes the point x∗ = c(S)

to a point x̃ in the interior of S, so S ′ = S(x∗,x̃). The next lemma will prove that a

set S ′ in the stated conditions exists.

Lemma 1. For all x,x′ ∈ S with x � 0 and gS(x) 6= gS(x′), then an x̃ ∈ int(S)

such that x′ ∈ int
(
S(x,x̃)

)
exist.

Proof. If x̃ ∈
(

min {x, x′} ,max {x, x′}
)

then x′ < x̃/xS1: S1/x ≥ 1, if x′ =

min {x′, x} then x′ < x̃ ≤ x̃(S1/x); if x′ = max {x, x′}, x < x̃ < x′, then x̃
x
> 1,

and x′ ≤ S1 < x̃
x
S1.

The frontier of the set αS at x′ is gαS(x′) = α2gS
(
x′/α1

)
, when α = x̃/x =

(x̃/x, ỹ/y), αS = S(x,x̃), and gS(x,x̃)
(x′) = (ỹ/y)gS

(
(x/x̃)x′

)
= (ỹ/y)gS(x̄), x̄ =

(x/x̃)x′. If ỹ = gS(x̃), because y ≤ gS(x), gS(x,x̃)
(x′) ≥

(
gS(x̃)/gS(x)

)
gS(x̄) taking

logarithms and considering w = log gS, we get log
(
gS(x,x̃)

(x′)
)
≥ w(x̃)−w(x) +w(x̄).

The function w is always a non-increasing and strictly concave function, the loga-

rithm of a non-increasing and concave function is non-increasing and strictly con-

cave. As min {x, x′} < x̃ < max {x, x′} there is a 0 < θ < 1 such that x̃ = xθx′1−θ

and x̄ = (x/x̃)x′ = x1−θx′θ. Using Jensen’s inequality xθx′1−θ ≤ θx + (1 − θ)x′

and as the function w is non increasing w(x̃) = w(xθx′1−θ) ≥ w
(
θx + (1 − θ)x′

)
>

θw(x) + (1 − θ)w(x′), the last inequality is derived from gS(x) 6= gS(x′) and strict

concavity of w. Applying this reasoning to the entire equation log
(
gS(x,x̃)

(x′)
)
≥

w
(
xθx′1−θ

)
− w(x) + w

(
x1−θx′θ

)
> w(x′). Taking exponentials back we prove that

gS(x,x̃)
(x′) =

gS(x̃)

y
gS(

x

x̃
x′) > gS(x′) (1)

If instead of ỹ = gS(x̃) we chose a value of ỹ sufficiently close to gS(x̃) the inequality

is preserved. We proved that for x̃ ∈
(

min {x, x′} ,max {x, x′}
)

and ỹ < gS(x̃), x′ <

(x̃/x)S1 = S1
(x,x̃) and gS(x,x̃)

(x′) = (ỹ/y)gS((x/x̃)x′) > gS(x′), so x′ = (x′, gS(x′)) ∈

int(S(x,x̃)) for x̃ ∈ int(S)
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The next result involves almost no derivation, however it is essential for later use,

and for this reason, it has a lemma of its own.

Lemma 2. ∀x,x′ ∈ S with x � 0 and gS(x) 6= gS(x′) for x̃ ∈ S such that x̃ ∈(
min {x, x′} ,max {x, x′}

)
and ỹ = gS(x̃) then

(
x′, gS(x′)

)
∈ S(x,x̃).

Proof. x′ ≤ (x̃/x)S1, equation (1) insures that gS(x,x̃)
(x′) > gS(x′), and with these

conditions we derive that
(
x′, gS(x′)

)
∈ S(x,x̃).

The choice of any set attributes to each player a strictly positive payoff. If this were

not the case and C(S)1 = 0 due to the non increasing frontier of the comprehensive

set S and PO, C(S) = (0, S2). With α = (1, S1/S2) then c(αS) = (0, S1). The set

∆ = ch
{

(0, 0), (0, S1), (S1, 0)
}
⊆ αS and by IIA c(∆) = c(αS) = (0, S1), which is in

contradiction with the sym axiom, as ∆ is symmetric.

Lemma 3. : If Si > 0 then c(S)i > 0 with i = 1, 2.

An immediate and simple implication of the IIA axiom is that two sets with

different bargaining choices cannot simultaneously contain the other’s set choice. If

c(S) ∈ S ′, c(S) ∈ S ∩ S ′, by IIA c(S ′ ∩ S) = c(S), using the same argument if

c(S ′) ∈ S then c(S ′ ∩ S) = c(S ′), and we get a contradiction if c(S ′) 6= c(S).

Lemma 4. : S, S ′ ∈ S+, c(S) 6= c(S ′) and c(S) ∈ S ′, then c(S ′) /∈ S.

We have now reunited the conditions to prove the main result of this section, that

the choice function must be continuous.

Theorem 1. The function c is continuous on S+.

Proof. Suppose c is not continuous, then a convergent sequence of sets Sk, Sk →

Sexists, with the bargaining choice c(Sk) = xk not convergent to c(S) = x∗. We

start by requiring that {xk}∞k=1 is convergent to the point x′ ∈ R2
+. Without loss

of generality we can also assume that c(S) = (x∗, y∗) = (x∗, x∗). If x∗ 6= y∗, as

S1 > 0 and S2 > 0, lemma (3) insures x∗ � 0, with α = (1, x∗
y∗), αSk → αS, and

c(αSk) = αc(Sk) → αx′ 6= αx∗ = αc(S), with αc(S) = (x∗, x∗), and we have a
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sequence in the desired conditions. We will divide the proof of this theorem in two

cases, one in which one coordinate of x′ is equal to x∗, and the other where both

coordinates are different.

Case 1: x∗ = x′ or x∗ = y′. Without loss of generality assume x∗ = x′. To

prove that exists x̄k = (xk, xk) ∈ Sk, that for large k are better than xk we will

start by noticing that there is a sequence of (dk, dk) ∈ Sk which converges to x∗.

From Sk → S and the continuity maximum function , it can be easily deduced that

dk = max{s : (s, s) ∈ Sk} → max{s : (s, s) ∈ S} = x∗. If xk = (xk, yk), with

x̄k = xk+yk
2

, the point x̄k = (x̄k, x̄k) belong to Sk for large k: by hypothesis
{
xk
}∞
k=1

is a convergent sequence to x′. x∗ 6= x′, and by PO y′ < y∗ = x∗, x̄k → (x′+ y′)/2 <

(x∗ + y∗)/2 = x∗. We know dk → x∗, so, for large k, x̄k < dk, (dk, dk) ∈ Sk and due

to comprehensibility of Sk, x̄k ∈ Sk
We found that x̄k ∈ Sk and c(Sk) = xk, if there is a set Ak with c(Ak) = x̄k and

xk ∈ Ak, we contradict lemma (4). The symmetric Ak = ch {(0, 0), (xk, yk), (yk, xk)}

by Sym must have c(Ak)1 = c(Ak)2, by PO c(Ak) = x̄k. But c(Ak) ∈ Sk for large

k, and by construction of Ak, c(Sk) = xk ∈ Ak, x̄k 6= xk, (remember x̄k = ȳk but

xk 6= yk for large k because x′ 6= y′), and we get a contradiction with lemma(4).

Case 2 In which x∗ 6= x′ and x∗ 6= y′. If we prove that exists x̃ ∈ S, such that

for at least one k ∈ N, xk ∈ S(x∗,x̃) and x̃ ∈ Sk we contradict lemma (4) again,

because c
(
S(x∗,x̃)

)
= x̃ and c(Sk) = xk. As Si > 0 and lemma (1) is applicable,

∃x̃ ∈ int(S) such that x′ ∈ int
(
S(x∗,x̃)

)
, therefore, as xk → x′, xk ∈ int

(
S(x∗,x̃)

)
for

large k. Because x̃ ∈ int(S) and Sk → S, then x̃ ∈ Sk for large k. The contradiction

is obtained, and c must be continuous.

As Sk → S, defining the compact rectangle R =
{
s : 0 ≤ s ≤

(
S1 + 1, S2 + 1

)}
,

Sk ⊂ R for large values of k. If we drop the initial assumption of convergence

of {xk}∞k=1 ⊂ R then there are (at least) two subsequences converging to different

values. However, as we just saw, any converging subsequence xki must converge to

x∗, hence it is impossible to have two subsequences converging to a value that is not

x∗.

As c is continuous in S+, PO and IIA by Peters and Wakker (1991)[corollary 5.7]
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c(S) is representable and maximizes a real valued function.

Corollary 1. c(S) maximizes a real valued function f on S ∈ S.

4 Nash’s Bargaining Solution

Thus far we discovered that the choice function c is representable. In this section we

will deduce the shape of the function f that represents the choice. Based on lemma

(2) we start by deriving that the function must be quasi concave. Then joining quasi

concavity with the axiom AT on the sets defined by lines we discover the function f .

Theorem 2. If f is such that c(S) = arg maxx∈S f(x) then f is strictly quasiconcave.

Proof. The function f is strictly quasi concave if for any x0,x1 and any α ∈ (0, 1),

xα = αx0 + (1−α)x1 we have that f(xα) > max{f(x0), f(x1)}. We will first prove

the intermediate result that for any line L with negative slope exists x2 ∈ [0, L1] such

that the function t(x) = f
(
x, gL(x)

)
is increasing for x ∈ [0, x2] and decreasing for

x ∈ [x2, L
1]. The x2 in question is such that c(L) =

(
x2, gL(x2)

)
.

In lemma (2) we proved that when x̃ ∈
(

min {x, x′} ,max {x, x′}
)
, ỹ = gS(x̃)

and gS(x) 6= gS(x′) then
(
x′, gS(x′)

)
∈ S(x,x̃). Replacing x, x′, x̃ by x2, x0, x1, if

x1 ∈ (x0, x2) we obtain that x0 ∈ L(x2,x1), where xi = (xi, gL(xi)) for i = 0, 1, 2.

c(L(x2,x1)) = x1, then t(x1) = f(x1) > f(x0) = t(x0). This result is valid for all

x0 < x1 < x2 so the function t in increasing in [0, x2]. To prove that t is decreasing

when x > x2 we use the same reasoning, this time with x1 ∈ (x2, x0), and prove again

that x0 ∈ L(x2,x1).

Let L̃ ∈ S+ stand for the line that passes through x0 and x1 and x2 be the point

at which t(x2) > t(x), ∀x ∈ [0, L̃1]. When x0 < x1 ≤ x2, as previously seen, t(x)

is increasing between x0 and x1 and, as x0 < xα < x1, f(xα) = t(xα) > t(x0) ≥

min{f(x0), f(x1)}; when x2 ≤ x0 < x1 then x0 < xα < x1, as t is decreasing for

x > x2, t(xα) > t(x1), f(xα) > f(x1) ≥ min{f(x0), f(x1)}; if x0 ≤ x2 ≤ x1, and

x0 < xα ≤ x2, t(xα) > t(x0) and f(xα) > f(x0) ≥ min{f(x0), f(x1)}; if x0 ≤ x2 ≤

x1 and x2 ≤ xα < x1, t(xα) > t(x1) and f(xα) > f(x1) ≥ min{f(x0), f(x1)}.
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We conclude that f(xα) = t(xα) > min{t(x0), t(x1)} = min{f(x0), f(x1)} and as

for any possibility f(xα) = f(αx0 + (1− α)x1) > min{f(x0), f(x1)} the function is

strictly quasiconcave.

Theorem 3. The choice c(S) is representable and c(S) = argx∈S maxx1x2

Proof. The line L̃ that passes through the points (2, 0) and (0, 2) it is symmetric and

due to PO and Sym c(L̃) = (1, 1). The line L0 that has c(L0) = (z1, z2) = z is

such that L0 = zL̃ and touches (2z1, 0) and (0, 2z2), this line can be described as:

(x, y) ∈ L0 if y = y0(x) = 2z2 + 2x2/x1x, for x ∈ [0, 2z1].

If we create a new line L1 that passes through c(L0) = z and
(
γ(2z1), 0

)
, for

γ > 0, then L1 = αL0, with α =
(
γ, γ/(2γ − 1)

)
. Or, writing the expression for

(x, y) ∈ L1, y = y1(x) = γ/(2γ − 1)2z2 − 1/(2γ − 1)(z2/z1)x, for x ∈ [0, γ(2z1)].

As c(L0) = (z1, z2) ∈ L1 and c(L1) = (γz1, γ/(2γ − 1)z2) by theorem(2) we know

that for any x ∈
[

min{z1, γz1},max{z1, γz1}
]
, f(x, y1(x)) > f(z1, z2). This construc-

tion of L1 allowed us to find a set of points that are better than the initial c(L0). If

we proceed the same way and construct L2 = αL1, we will find a set of points that

are better than c(L1) and therefore better than c(L0). So we can find a sequence of

lines Lk = αkL0 that have a part that is better than c(L0). For γ > 1 and x ≥ z1 we

can define the function yγ(x) = yk(x), γk−1z1 ≤ x < γkz1. So

yγ(x) =
( γ

2γ − 1

)k
2z2 −

( 1

2γ − 1

)k z2
z1
x for γk−1z1 ≤ x < γkz1 (2)

Any point (x, yγ(x)) is better than c(L0), because by theorem(2) (x, yγ(x)) is

better than γk−1z for γk−1z1 ≤ x < γkz1 and by an inductive argument we know

that γk−1z is better than c(L0). This is true whatever the value for γ so we may find

y(x) = limγ↓1 yγ(x). Any point above (x, y(x)) is better than z. As γk−1z1 ≤ x < γkz1

we know that ln(x/z)/ln γ ≤ k < ln(x/z)/ln γ + 1. Due to γ/(2γ − 1) < 1 for γ > 1,

( γ

2γ − 1

) ln(x/z)
ln γ

+1
<
( γ

2γ − 1

)k
<
( γ

2γ − 1

) ln(x/z)
ln γ (3)

Taking the logarithm and applying the L’Hôpital rule we get limγ↓1
(
γ/(2γ − 1)

)ln(x/z)/ln γ+1
=
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limγ↓1
(
γ/(2γ − 1)

)ln(x/z)/ln γ
= z1/x, and by (3) we conclude limγ↓1

(
γ/(2γ − 1)

)k
=

z1/x. Applying the same type of calculation we get limγ↓1
(
1/(2γ − 1)

)k
= (z1/x)2.

Substituting in (3) we derive that y(x) = limγ↓1 yγ(x) = (z1/x)(2z2)−(z1/x)2(z2/z1)x =

z1z2/x.

We can apply the same reasoning for γ < 1 and define a function y(x) = limγ↑1 yγ(x)

for x < z1 with yγ(x) as follows

yγ(x) =
( γ

2γ − 1

)k
2z2 −

( 1

2γ − 1

)k z2
z1
x for γkz1 ≤ x < γk−1z1 (4)

And, as before, it can be derived that y(x) = z1z2/x, this time for x < z1. So

for all points (x, y) such that xy > z1z2, f(x, y) > f(z1, z2). Then, to chose the best

option in a set S for the function f is the same as choosing the best for the function

g(z1, z2) = z1z2 on the same set, c(S) = argx∈S max f(x1, x2) = argx∈S maxx1x2.

The generalization to n players is straightforward. Let x ∈ Rn−2, the (generalized)

Nash axioms for n players, for the compact and convex sets of the form S|x = {s ∈

Rn : si = xi for i = 3, . . . , n}, must be equivalent to the Nash axioms for two players.

Therefore the solution x∗ = c(S|x) is such that (x∗1, x
∗
2) = arg max(x1,x2,x)∈S|x s1s2. For

a general compact and convex S ⊂ Rn if x =
(
c(S)3, . . . , c(S)n

)
by IIA, c(S) = c(S|x),

the bargaining solution must be such that (c(S)1, c(S)2) = arg max(s1,s2,x)∈S s1s2.

The same happens for any two players i and j, the solution must maximize xixj

in the section where the values for the other players are fixed at c(S). Formally,

with x∗ = c(S), f(x) = Πn
i=1xi, gi(x) = xi − x∗i for i ∈ {1, . . . , n} and gn+1(x) =

xn−gS(x1, . . . , xn−1). x
∗ maximizes f on each of the manifolds defined by ∩k 6=i,jg−1k (0)

with i, j ∈ {1, . . . , n} and i 6= j. Then it exists, Edwards (2012)[theorem5.8, pag.113],

{λijk }k 6=i,j such that ∇f(x∗) =
∑

k 6=i,j λ
ij
k∇gk(x∗). From these equations it can be

derived that f ′i/g
′
S,i = f ′j/g

′
S,j at x∗ for any i, j pair. So exists a λ such that ∇f(x∗) =

λ∇gS(x∗), this equation is the condition for x∗ to be a local extremum of f in

the manifold defined by gS, in this case it must be that x∗ is a local maximand

of f . We know that, Avriel, Diewert, Schaible, and Zang (2010)[Proposition 3.3,

pag.58], that a local maximum of a quasi concave function is a global maximum and
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so c(S) = x∗ = arg maxx∈S f(x).

5 Conclusion

In this paper we developed a new method to find Nash’s solution to the bargaining

problem. Peters and Wakker (1991) provide the conditions for the representability

of the Nash bargaining solution. Then, from the quasiconcavity and the AT Nash

solution is found. The mathematical arguments used in this paper are mainly of real

analysis origin and are not directly adaptable to different bargaining structures, such

as for example those defined in Peters and Vermeulen (2012), Conley and Wilkie

(1996) or to Kalai and Smorodinsky (1975). However, axiomatic bargaining does

exhibit algebraic properties which can be explored in future research to overcome this

limitation. Namely, we can regard the AT axiom as a morphism, and with the right

definition of the multiplication operation on the bargaining sets, each bargaining

model can then be interpreted algebraically. The study of the different axiomatic

bargainings under this algebraic and more general framework will likely extend the

understanding we detain of them.

10



References

Avriel, M., W. E. Diewert, S. Schaible, and I. Zang (2010): “Generalized

Concavity,” Cambridge Books.

Conley, J. P., and S. Wilkie (1996): “An extension of the Nash bargaining

solution to nonconvex problems,” Games and Economic behavior, 13(1), 26–38.

Edwards, C. H. (2012): Advanced calculus of several variables. Courier Dover Pub-

lications.

Kalai, E., and M. Smorodinsky (1975): “Other solutions to Nash’s bargaining

problem,” Econometrica: Journal of the Econometric Society, pp. 513–518.

Mariotti, M. (1999): “Fair bargains: distributive justice and Nash bargaining

theory,” The Review of Economic Studies, 66(3), 733–741.

Nash, J. F. (1950): “The bargaining problem,” Econometrica: Journal of the Econo-

metric Society, pp. 155–162.

Peters, H., and D. Vermeulen (2012): “WPO, COV and IIA bargaining solu-

tions for non-convex bargaining problems,” International Journal of Game Theory,

41(4), 851–884.

Peters, H., and P. Wakker (1991): “Independence of irrelevant alternatives and

revealed group preferences,” Econometrica: journal of the Econometric Society,

pp. 1787–1801.

Serrano, R. (2008): “The New Palgrave: a Dictionary of Economics, chapter Bar-

gaining,” McMillian, London.

Zhou, L. (1997): “The Nash bargaining theory with non-convex problems,” Econo-

metrica: Journal of the Econometric Society, pp. 681–685.

11


	Introduction
	Notation and Definitions
	The Bargaining Choice is Representable
	Nash's Bargaining Solution
	Conclusion

