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THE USE AND MISUSE OF STRUCTURAL EQUATION MODELING IN 

MANAGEMENT RESEARCH 

 

1.  INTRODUCTION 

 

Structural equation models (SEM) with 

unobservable variables are a dominant research 

paradigm in the management community today, 

even though it originates from the psychometric 

(covariance-based, LISREL; hereinafter 

CBSEM) and chemometric research tradition 

(variance-based, PLS; hereinafter VBSEM). The 

establishment of the covariance-based SEM 

approach can be traced back to the development 

of the maximum likelihood covariance structure 

analysis developed by Jöreskog (1966, 1967, 

1969, 1970, 1973, 1979) and extended by Wiley 

(1973). The origins of the PLS approach, 

developed by Herman Wold, can be traced back 

to 1963 (Wold 1975, 1982). The first procedures 

for single- and multi-component models have 

used least squares (LS), and later Wold (1973) 

extended his procedure several times under 

different names: NIPLS (nonlinear iterative 

partial least square) and NILES (nonlinear 

iterative least square).   

Management measures in self-reporting 

studies are based almost exclusively (e.g., 

Diamantopoulos & Winklhofer 2001; 

Diamantopoulos et al. 2008) on creating a scale 

that is assumed reflective and further analysis is 

dependent on a multitrait-multimethod (MTMM) 

approach and classical test theory, which implies 

application of a covariance-based structural 

equation model (CBSEM). A partial least square 

(PLS) approach, which was introduced in 

management literature by Fornell and Bookstein 

(1982), is another statistical instrument; but so 

far this approach has not had a wider application 

in management literature and research practice. 

The use of PLS for index construction purposes 

is an interesting area for further research 

(Diamantopoulos & Winklhofer 2001; Wetzels et 

al. 2009) and with new theoretical insights and 

software developments it is expected that this 

approach will have wider acceptance and 

application in the management community.   

After reading and reviewing a great number of 

studies (articles, books, studies, etc.) that apply 

SEM, as well as analyzing a great number of 

academic articles (e.g., Boomsma 2000; Chin 

1998a; Diamantopoulos et al. 2008; Finn & 

Kayande 2005; Tomarken & Waller 2005), it has 

become obvious that many researchers apply this 

statistical procedure without a comprehensive 

understanding of its basic foundations and 

principles. Researchers often fail in application 

and understanding of (i) conceptual background 

of the research problem under study, which 

should be grounded in theory and applied in 

management; (ii) indicator - construct 

misspecification design (e.g., Chin 1998b; Jarvis 

et al. 2003; MacKenzie 2001; MacKenzie et al. 

2005); (iii) an inappropriate use of the necessary 

measurement steps, which is especially evident in 

the application of CBSEM (indices reporting, 

competing models, parsimonious fit, etc.) and 

(iv) an inaccurate reporting of the sample size 

and population under study (cf. Baumgartner & 

Homburg 1996; Boomsma 2000).    

The study that thoroughly analyzes, reviews 

and presents two streams using common 

methodological background. There are examples 

in the literature that analyze two streams (e.g. 

Chin 1998b; Petter et al. 2007; Henseler et al. 

2009; Wetzels et al. 2009; Hair et al. 2010; cf. 

Anderson & Gerbing 1988), but previous studies 

take a partial view, analyzing one stream and 
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focusing on the differences and advantages 

between the two streams. Fornell and Bookstein 

(1982) have demonstrated in their empirical 

study many advantages of PLS over LISREL 

modeling, especially underlying the differences 

in measurement model specification, in which 

reflective constructs are associated with LISREL 

(CBSEM), whereas formative and mixed 

constructs are associated with PLS (VBSEM). 

From the present perspective, the study of 

Fornell and Bookstein makes a great historical 

contribution because it was the first study that 

introduced and analyzed the two streams in 

management research. Unfortunately, 

management theory and practice remained almost 

exclusively focused on the CBSEM application. 

Their study has somewhat limited theoretical 

contribution because they focused only on 

differences in the measurement model 

specification between the two streams. We focus 

on the correct model specification with respect to 

the theoretical framework, which is a crucial 

aspect of the model choice in SEM. Our intention 

is to extend the conceptual knowledge that 

remained unexplored and unutilized. Our paper is 

as minimally technical as possible, because our 

intention is not to develop new research avenues 

at this point, but to address possible theory 

enhancements and gaps in extant management 

research practice (cf. Yadav 2010).     

The purpose of this article is two-fold: (i) to 

question the current research myopia in 

management, because application of the latent 

construct modeling almost blindly adheres only a 

covariance-based research stream; and (ii) to 

improve the conceptual knowledge by comparing 

the most important procedures and elements in 

the structural equation modeling (SEM) study, 

using different theoretical criteria. We present the 

covariance-based (CBSEM) and variance-based 

(VBSEM) structural equation modeling streams.  

The manuscript is organized into several 

sections. First, we discuss a general approach to 

structural equation modeling and its applicability 

in management research. Second, we discuss the 

two SEM streams in detail, depicted in Table 1, 

and followed by an analysis of topics such as 

theory, model specification, sample and 

goodness-of-fit. The remaining part of the paper 

is devoted to conclusions and some open 

questions in management research practice that 

remain under-investigated and unutilized. 

 

2. COVARIANCE-BASED AND 

VARIANCE-BASED STRUCTURAL 

EQUATION MODELING 

 

Structural models in management are 

statistical specifications and estimations of data 

and economic and/or management theories of 

consumer or firm behavior (cf. Chintagunta et al. 

2006). Structural modeling tends to explain 

optimal behavior of agents and to predict their 

future behavior and performances. By behavior 

of agents, we mean consumer utility, employee 

performances, profit maximizing and 

organizational performances by firms, etc. (cf. 

Chintagunta et al. 2006). SEM is a statistical 

methodology that undertakes a multivariate 

analysis of multi-causal relationships among 

different, independent phenomena grounded in 

reality. This technique enables the researcher to 

assess and interpret complex interrelated 

dependence relationships as well as to include the 

measurement error on the structural coefficients 

(Hair et al. 2010, MacKenzie 2001; Steenkamp & 

Baumgartner 2000). Byrne (1998) has advocated 

that structural equation modeling has two 

statistical pivots: (i) the causal processes are 

represented by a series of structural relations; and 

(ii) these equations can be modeled in order to 

conceptualize the theory under study. SEM can 
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be understood as theoretical empiricism because 

it integrates theory with method and observations 

(Bagozzi 1994). Hair et al. (2010, p. 616) have 

advocated that SEM examines “the structure of 

interrelationships expressed in a series of 

equations”. These interrelationships depict all of 

the causality among constructs, the exogenous as 

well as endogenous variables, which are used in 

the analysis (Hair et al. 2010).  

Two SEM streams have been recognized in 

modern research practice. The first one is the 

“classical” SEM approach – also known by 

different names including covariance structure 

analysis and latent variable analysis – which 

utilizes software such as LISREL or AMOS 

(Hair et al. 2010; Henseler et al. 2009). We will 

call this stream covariance-based SEM (CBSEM) 

in this manuscript. For most researchers in 

marketing and business research, CBSEM “is 

tautologically synonymous with the term SEM” 

(Chin 1998b, p. 295). Another stream is known 

in the literature as partial least squares (PLS) or 

component-based SEM (e.g., Henseler et al. 

2009; McDonald 1996; Tenenhaus 2008; Hwang 

2010). This stream is based on application of 

least squares using the PLS algorithm with 

regression-based methods or generalized 

structured component analysis (GSCA), which is 

a fully informational method that optimizes a 

global criterion (Tenenhaus 2008; Hwang et al. 

2010). This stream will be named the variance-

based SEM (VBSEM) in this text. 

The rationale behind this notation is grounded 

on the following three characteristics: 

i) Basic specification of the 

structural models is similar, although 

approaches differ in terms of their model 

development procedure, model 

specification, theoretical background, 

estimation and interpretation (cf. Hair et al. 

2010). 

ii) VBSEM intends to explain 

variance, i.e. prediction of the construct 

relationships (Fornell & Bookstein 1982; 

Hair et al. 2010; Hair et al. 2012); CBSEM 

is based on the covariance matrices; i.e. 

this approach tends to explain the 

relationships between indicators and 

constructs, and to confirm the theoretical 

rationale that was specified by a model. 

iii) Model parameters differ in two 

streams. The variance-based SEM is 

working with component weights that 

maximize variance, whereas the 

covariance-based SEM is based on factors 

that tend to explain covariance in the model 

(cf. Fornell & Bookstein 1982).  

We present Table 1 below; in the remainder of 

this section, the two streams will be described in 

detail, using topics such as theory, model 

specification, sample and goodness-of-fit. 

Interested readers can use Table 1 as a 

framework and guide throughout the manuscript. 

 

2.1. Theory 

 

Academic research is grounded in theory, 

which should be confirmed or rejected, or may 

require further investigation and development. 

Hair et al. (2010, p. 620) have argued, “a model 

should not be developed without some 

underlying theory”, and this process includes 

measurement and underlying theory (Fornell 

1983; cf. Bagozzi 1983). Without proper 

measurement theory, the researcher cannot 

develop adequate measures and procedures to 

estimate the proposed model.  
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Table 1: Structural equation modeling: CBSEM & VBSEM 

TOPIC 
S E M 

COVARIANCE (CBSEM) VARIANCE (VBSEM) 

T
h

eo
ry

 Theory background  strictly theory driven  based on theory, but data driven 

Relation to the theory  confirmatory  predictive 

Research orientation    parameter  prediction  

M
o

d
el

 s
p

ec
if

ic
at

io
n

  

Type of the latent measures 

(constructs)  

reflective indicators (and formative, if identified by 

reflective) 
reflective and/or formative indicators 

Latent variables  factors components 

Model parameters   factor means component weights 

Type of study  psychometric analysis (attitudes, purchase intention, etc.) 

drivers of success, organizational constructs (market / 

service / consumer orientation, sales force, employees, 

etc.) 

Structure of unobservables indeterminate determinate  

Reliability measures  Cronbach’s α (and / or Guttman’s λ and GLB) 

a) Cohen’s ƒ
2
 

b) ρc indicator or Cronbach’s α, Guttman’s λ and 

GLB (for the reflective models only) 

Input data  covariance / correlation matrix individual-level raw data 

S
am

p
le

 

Sample size   
ratio of sample size to free model parameters – minimum 5 

observations to 1 free parameter, optimum is 10  

a) Ten observations multiplied with the construct that 

has highest number of indicators 

b) The endogenous construct with the largest number 

of exogenous constructs, multiplied with ten 

observations  

Data distribution assumption  identical distribution “soft” modeling , identical distribution is not assumed  

G
o

o
d

n
es

s-
o

f-
fi

t 

Assessment of the model fit  

a) Overall (absolute) fit measures 

b) Comparative (incremental) fit measures 

c) Model parsimony 

a) Model predictiveness (coefficient of 

determination, Q
2
 predictive relevance and average 

variance extracted – AVE)  

b) Stability of estimates, applying the resampling 

procedures (jack-knifing and bootstrapping). 

Residual co/variance  
residual covariances are minimized for optimal parameter 

fit  

residual variances are minimized to obtain optimal 

prediction 

    

 Software LISREL, AMOS, etc. SmartPLS, SPSS (PLS module), etc. 
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Furthermore, the researcher cannot provide 

proper interpretation of the hypothesized model, 

there are no new theoretical insights and overall 

theoretical contribution is dubious without 

underlying theory (cf. Bagozzi & Phillips 1982). 

However, there is an important difference in 

theory background between CBSEM and 

VBSEM. CBSEM is considered a confirmatory 

method that is guided by theory, rather than by 

empirical results, because it tends to replicate 

the existing covariation among measures 

(Fornell & Bookstein 1982; Hair et al. 2010; 

Reinartz et al. 2009; cf. Anderson & Gerbing 

1988; Diamantopoulos & Siguaw 2006; Fornell 

1983; Wetzels et al. 2009), analyzing how 

theory fits with observations and reality. 

CBSEM is strictly theory driven, because of the 

exact construct specification in measurement 

and structural model as well as necessary 

modification of the models during the 

estimation procedure (Hair et al. 2010; cf. 

Fornell 1983; Rigdon 2005); “the chi square 

statistic of fit in LISREL is identical for all 

possible unobservables satisfying the same 

structure of loadings, a priori knowledge is 

necessary” (Fornell & Bookstein 1982, p. 449). 

VBSEM is also based on some theoretical 

foundations, but its goal is to predict the 

behavior of relationships among constructs and 

to explore the underlying theoretical concept. 

From a statistical point of view, VBSEM reports 

parameter estimates that tend to maximize 

explained variance, similarly to OLS regression 

procedure (Fornell & Bookstein 1982; Anderson 

& Gerbing 1988; Diamantopoulos & Siguaw 

2006; Hair et al. 2010; Hair et al. 2012; cf. 

Wetzels et al. 2009; Reinartz et al. 2009; 

Rigdon 2005). Therefore, VBSEM is based on 

theory, but is data driven in order to be 

predictive and to provide knowledge and new 

theoretical rationale about the researched 

phenomenon. According to Jöreskog and Wold 

(1982), CBSEM is theory oriented and supports 

the confirmatory approach in the analysis, while 

VBSEM is primarily intended for predictive 

analysis in cases of high complexity and small 

amounts of information. 

There is one important distinction regarding 

the research orientation between the two 

streams. Residual covariances in CBSEM are 

minimized in order to achieve parameter 

accuracy, however for VBSEM, residual 

variances “are minimized to enhance optimal 

predictive power” (Fornell & Bookstein 1982, 

p. 443; cf. Bagozzi 1994; Chin 1998; Yuan et al. 

2008). In other words, the researcher tends to 

confirm theoretical assumptions and accuracy of 

parameters in CBSEM; in contrast, the 

predictive power of the hypothesized model is 

the main concern in VBSEM.  

 

2.2. Specification of the measurement model  

 

The vast majority of management research 

includes self-reported studies of consumer 

behavior, attitudes and/or opinions of managers 

and employees, which express the proxy for 

different behavioral and organizational 

relationships in business reality. A researcher 

develops a model that is a representation of 

different phenomena connected with causal 

relationships in the real world. In order to 

provide a theoretical explanation of these 

behavioral and/or organizational relationships, 

the researcher has to develop complex research 

instruments that will empirically describe 

theoretical assumptions about researched 

phenomenon. This process is named the 

measurement model specification (Fornell & 

Bookstein 1982; Hair et al. 2010; Rossiter 

2002). 

A measure is an observed score obtained via 

interviews, self-reported studies, observations, 
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etc. (Edwards & Bagozzi 2000; Howell et al. 

2007). It is a quantified record that represents an 

empirical analogy to a construct. In other words, 

a measure is quantification of the material 

entity. A construct in measurement practice 

represents a conceptual entity that describes 

manifest and/or latent phenomenon as well as 

their interrelationships, outcomes and 

performances. Constructs themselves are not 

real (or tangible) in an objective manner, even 

though they refer to real-life phenomena 

(Nunnally & Bernstein 1994). In other words, 

the relationship between a measure and a 

construct represents the relationship between a 

measure and the phenomenon, in which the 

construct is a proxy for the phenomena that 

describe reality (cf. Edwards & Bagozzi 2000). 

Throughout this paper, we use the terms 

“measure” and “indicator” interchangeably to 

refer to a multi-item operationalization of a 

construct, whether it is reflective or formative. 

The terms “scale” and “index” should be used to 

distinguish between reflective and formative 

items respectively (Diamantopoulos & Siguaw 

2006).     

Academic discussions about the relationships 

between measures and constructs are usually 

based on examination of the causality among 

them. The causality of the reflective construct is 

directed from the latent construct to the 

indicators, with the underlying hypothesis that 

the construct causes changes in the indicators 

(Fornell & Bookstein 1982; Edwards & Bagozzi 

2000; Jarvis et al. 2003). Discussions of 

formative measures indicate that a latent 

variable is measured using one or several of its 

causes (indicators), which determine the 

meaning of that construct (e.g., Blalock 1964; 

Edwards & Bagozzi 2000; Jarvis et al. 2003). 

Between the reflective and formative constructs 

exists an important theoretical and empirical 

difference, but many researchers do not pay 

appropriate attention to this issue and 

mistakenly specify the wrong measurement 

model. According to Jarvis et al. (2003), 

approximately 30% of the latent constructs 

published in the top management journals were 

incorrectly specified. The model ramification 

included incorrect specification of the reflective 

indicators when they should have been 

formative indicators, at not only the first-order 

construct level but also the relationships 

between higher-order constructs (Jarvis et al. 

2003; cf. Petter et al. 2007). Using the Monte 

Carlo simulation, they have demonstrated that 

the misspecification of indicators can cause 

biased estimates and misleading conclusions 

about the hypothesized models (cf. Yuan et al. 

2008). The source of bias is mistakenly 

specified due to the direction of causality 

between the measures and latent constructs, 

and/or the application of an inappropriate item 

purification procedure (Diamantopoulos et al. 

2008). The detailed descriptions and 

applications of the reflective and formative 

constructs are presented in the following 

subsection. 

The latent variables in CBSEM are viewed as 

common factors, whereas in VBSEM they are 

considered as components or weighted sums of 

manifest variables. This implies that latent 

constructs in the VBSEM approach are 

determinate, whereas in the CBSEM approach 

they are indeterminate (Chin 1998b; cf. Fornell 

& Bookstein 1982). The consequence is the 

specification of model parameters as factor 

means in CBSEM, whereas in VBSEM they are 

specified as component weights (cf. Rigdon 

2005; Reinartz et al. 2009). Factors in the 

CBSEM estimates explain covariance, whereas 

component weights maximize variance because 

they represent a linear combination of their 

indicators in the latent construct (Fornell & 

Bookstein 1982). Several researchers have 

examined the relationships between latent and 

manifest variables (e.g., Bagozzi 2007; Howell 
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et al. 2007). They have suggested that the 

meaning of epistemic relationships between the 

variables should be established before its 

inclusion and application within a nomological 

network of latent and manifest variables.      

The researcher can use single and multiple 

measures to estimate the hypothesized 

constructs. Researchers usually use multiple 

measures because (i) most constructs can be 

measured only with an error term; (ii) a single 

measure cannot adequately capture the essence 

of the management phenomena (cf. Curtis & 

Jackson 1962); (iii) it is necessary to prove that 

the method of measurement is correct (Nunnally 

& Bernstein 1994; MacKenzie et al. 2005); and 

(iv) it is necessary to use a minimum of three 

indicators per construct in order to be able to 

identify a model in the CBSEM set-up (cf. 

Anderson & Gerbing 1988; Bollen 1989b; 

Baumgartner & Homburg 1996). When multiple 

measures are developed, the researcher has to 

estimate the model that accurately, validly and 

reliably represents the relationship between 

indicators and latent constructs in the structural 

model. Research bias may arise if the researcher 

uses very few indices (three or less), or fails to 

use a large number of indicators for each latent 

construct (cf. Chin 1998b; Peter 1979); so-

called “consistency at large”. In the VBSEM 

technique, consistency at large means that 

parameters of the latent variable model and the 

number of indicators are infinite (Wold 1980; 

McDonald 1996; cf.; Reinartz et al. 2009; 

Rigdon 2005).  

The structural constructs (i.e., 

multidimensional constructs, hierarchical 

constructs; cf. Fornell & Bookstein 1982; Law 

et al. 1998; McDonald 1996; Wetzels et al. 

2009; Bagozzi 1994; Chintagunta et al. 2006) 

represent multilevel inter-relationships among 

the constructs that involve several exogenous 

and endogenous interconnections and include 

more than one dimension. The researcher should 

distinguish higher-order models from a model 

that employs unidimensional constructs that are 

characterized by a single dimension among the 

constructs. The literature (cf. Fornell & 

Bookstein 1982; Chin 1998b; Diamantopoulos 

& Winklhofer 2001; MacKenzie et al. 2005; 

Tenenhaus et al. 2005; Wetzels et al. 2009, etc.) 

recognize three types of structural constructs: 

the common latent construct model with 

reflective indicators, the composite latent 

construct model with formative indicators, and 

the mixed structural model.  

 

2.2.1. Types of latent constructs  

The simplified structural models with the 

reflective and/or formative constructs are 

represented in Figures 1, 2 and 3. A circle or 

ellipsis represents an unobserved or latent 

variable; a square represents an observed or 

manifest variable (cf. Bagozzi & Phillips 1982). 

An arrow that indicates a direction between a 

circle and square represents the effects of a 

latent variable on its measure in the first order 

reflective construct and, vice versa, the effects 

of a manifest variable on a latent variable in the 

first-order formative construct. 

These figures use “classical” SEM notation 

that needs some attention. ξ (ksi) represents a 

latent construct associated with observed xi 

indicators, η (eta) stands for a latent construct 

associated with observed yi indicators, the error 

terms δi (delta) and εi (epsilon) are associated 

with observed xi and yi indicators, respectively. 

ζ (zeta) is the error term associated with the 

formative construct. λij represents factor loading 

in the i-th observed indicator that is explained 

by the j-th latent construct. γij represents weight 

in the i-th observed indicator that is explained 

by the j-th latent construct. A detailed 

description is provided in Table 2. 
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Table 2: Summary of abbreviations and descriptions used in the SEM study 

Symbol Name Description 

ξ ksi 
A latent construct associated with observed xi 

indicators  

η eta 
A latent construct associated with observed yi 

indicators 

δi delta The error term associated with observed xi indicators 

εi epsilon The error term associated with observed yi indicators 

ζ zeta The error term associated with formative construct 

λij lambda 
factor loading in the i-th observed indicator that is 

explained by the j-th latent construct 

γij gamma 
weight in the i-th observed indicator that is explained 

by the j-th latent construct 

xi  
An indicator associated with exogenous construct, i.e. 

vector of observed exogenous variable  

yi  
An indicator associated with endogenous construct, 

i.e. vector of observed endogenous variable 

  

Table 3 represents common topics and 

criteria for the distinction between reflective 

and formative indicators. Common topics are 

grouped according to two criteria: i) the 

construct-indicator relationship; and ii) 

measurement. The construct-indicator 

relationship topic is discussed via employing 

criteria such as direction of causality, theoretical 

framework, definition of the latent construct, 

common antecedents and consequences, internal 

consistency, validity of constructs and indicator 

omission consequences. The measurement topic 

is discussed by analyzing the issue of 

measurement error, interchangeability, 

multicollinearity and a nomological net of 

indicators.   

Figure 1 depicts the “classical” SEM case 

where the model is specified in the reflective 

mode. The type A case depicts a path diagram 

between the two latent constructs (ξ – 

exogenous and η – endogenous), with three 

indicators per construct (xi and yi). This case 

can be represented by equations 1 and 2:  

(1) xi = λijξ + δi  

(2) yi = λijη + εi  

This specification assumes that the error term 

is unrelated to the latent variable COV(η, εi) = 

0, and independent COV(εi, εj) = 0, for i ≠ j and 

expected value of error term E(εi) = 0. This type 

of model specification is typical for the classical 

test theory and factor analysis models (Fornell 

& Bookstein 1982; Bollen & Lennox 1991; 

Chin 1998b; Diamantopoulos & Winklhofer 

2001) used in behavioral studies. 
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Table 3: Indicators: Reflective indicators (RI) & Formative indicators (FI) 

TOPICS 
Indicators 

REFLECTIVE (RI) FORMATIVE (FI) 

T
h
e 

co
n
st

ru
ct

 –
 i

n
d
ic

at
o
r 

re
la

ti
o
n
sh

ip
 

Direction of causality  from the construct to the measure (indicator) from the measure (indicator) to the construct 

Theoretical framework (type of the 

constructs)  
psychometric constructs (attitudes, personality, etc.) 

organizational constructs (marketing mix, drivers of 

success, performances, etc.)  

The latent construct is empirically 

defined   
common variance total variance 

The indicators relationship to the same 

antecedents and consequences  
required  not required  

Internal consistency reliability  implied  not implied  

Validity of constructs  internal consistency reliability nomological and / or criterion-related validity  

Indicator omission from the model  does not influence the construct may influence the construct 

Number of indicators per construct minimum 3  

i) In VBSEM: Conceptually dependent   

ii) In CBSEM: min 3 formative, with 2 reflective 

for identification 

 

M
ea

su
re

m
en

t 

Measurement error  at the indicator level at the construct level 

Interchangeability  expected not expected 

Multicollinearity expected not expected 

Development of the multi-item 

measures  
scale index 

Nomological net of the indicators should not differ may differ 
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Application of the classical test theory “assumes 

that the variance in scores on a measure of a 

latent construct is a function of the true score 

plus error” (MacKenzie et al. 2005, p. 710; 

Podsakoff et al. 2003), as we presented in 

equations 1 and 2. The rationale behind the 

reflective indicators is that they all measure the 

same underlying phenomenon (Chin 1998b) and 

they should account for observed variances and 

covariances (Fornell & Bookstein 1982; cf. 

Edwards 2001) in the measurement model. The 

meaning of causality has direction from the 

construct to the measures with underlying 

assumptions that each measure is imperfect 

(MacKenzie et al. 2005), i.e., that has the error 

term which can be estimated at the indicator 

level.   

Figure 1 – Type A: Latent constructs with 

reflective indicators 

 

 

Figure 2 – Type B: Latent constructs with 

formative indicators 

 

 

The type B model specification, presented in 

Figure 2, is known as a formative (Fornell & 

Bookstein 1982; cf. Edwards 2001) or causal 

indicator (Bollen and Lennox 1991), because 

the direction of causality goes from the 

indicators (measures) to the construct and the 

error term is estimated at the construct level. 

This type of model specification can be 

represented by equations 3 and 4: 

(3)  ξ = γijxi + ζ 

(4)  η = γijyi + ζ   

This specification assumes that the indicators 

and error term are not related, i.e. COV(yi, ζ) = 

0, and E(ζ) = 0 . Formative indicators were 

introduced for the first time by Curtis and 

Jackson (1962) and extended by Blalock (1964). 

This type of model specification assumes that 

the indicators have an influence on (or that they 

cause) a latent construct. In other words, the 

indicators as a group “jointly determine the 

conceptual and empirical meaning of the 

construct” (Jarvis et al. 2003, p. 201; cf. 

Edwards & Bagozzi 2000). The type B model 

specification would give better explanatory 

power, in comparison to the type A model 

specification, if the goal is the explanation of 

unobserved variance in the constructs (Fornell 

& Bookstein 1982; cf. McDonald 1996). 

Application of the formative indicators in the 

CBSEM environment is limited by necessary 

additional identification requirements. A model 

is identified if model parameters have only one 

group of values that create the covariance 

matrix (Gatignon 2003). In order to resolve the 

problem of indeterminacy that is related to the 

construct-level error term (MacKenzie et al. 

2005), the formative-indicator construct must be 

associated with unrelated reflective constructs. 

This can be achieved if the formative construct 

emits paths to i) at least two unrelated reflective 

indicators; ii) at least two unrelated reflective 

constructs; and iii) one reflective indicator that 

is associated with a formative construct and one 

reflective construct (MacKenzie et al. 2005; cf. 
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Fornell & Bookstein 1982; Diamantopoulos & 

Winklhofer 2001; Diamantopoulos et al. 2008; 

Edwards & Bagozzi 2000; Howell et al. 2007; 

Bagozzi 2007; Wilcox et al. 2008).     

From an empirical point of view, the latent 

construct captures (i) the common variance 

among indicators in the type A model 

specification; and (ii) the total variance among 

its indicators in the type B model specification, 

covering the whole conceptual domain as an 

entity (cf. Cenfetelli & Bassellier 2009; 

MacKenzie et al. 2005). Reflective indicators 

are expected to be interchangeable and have a 

common theme. Interchangeability, in the 

reflective context, means that omission of an 

indicator will not alter the meaning of the 

construct. In other words, reflective measures 

should be unidimensional and they should 

represent the common theme of the construct 

(e.g., Petter et al. 2007; Howell et al. 2007). 

Formative indicators are not expected to be 

interchangeable, because each measure 

describes a different aspect of the construct’s 

common theme, and dropping an indicator will 

influence the essence of the latent variable (cf. 

Bollen & Lenox 1991; Coltman et al. 2008; 

Diamantopoulos & Winklhofer 2001; 

Diamantopoulos et al. 2008; Jarvis et al. 2003). 

The behavior of measures of the construct with 

regards to the same antecedents and 

consequences is an important criterion for the 

assessment of the construct-indicator 

relationship. Reflective indicators are 

interchangeable, which means that measures are 

affected by the construct, and they must have 

the same antecedents and consequences. The 

formative constructs are affected by the 

measures, thus are not necessarily 

interchangeable, and each measure can 

represent a different theme. For the formative 

indicators it is not necessary to have the same 

antecedents and consequences (cf. Bollen 2007; 

Coltman et al. 2008; Howell et al. 2007; Jarvis 

et al. 2003; Petter et al. 2007). 

Internal consistency is implied within the 

reflective indicators, because measures must 

correlate. High correlations among the reflective 

indicators are necessary, because they represent 

the same underlying theoretical concept. This 

means that all of the items are measuring the 

same phenomenon within the latent construct 

(Petter et al. 2007; MacKenzie et al. 2005). On 

the contrary, within the formative indicators, 

internal consistency is not implied because the 

researcher does not expect high correlations 

among the measures (cf. Jarvis et al. 2003). 

Because formative measures are not required to 

be correlated, validity of construct should not be 

assessed by internal consistency reliability as 

with the reflective measures, but with other 

means such as nomological and/or criterion-

related validity (cf. Bollen & Lenox 1991; 

Coltman et al. 2008; Diamantopoulos et al. 

2008; Jarvis et al. 2003; Bagozzi 2007).  

The researcher should ascertain the 

difference of multicollinearity between the 

reflective and formative constructs. In the 

reflective-indicator case, multicollinearity does 

not represent a problem for measurement-model 

parameter estimates, because the model is based 

on simple regression (cf. Fornell & Bookstein 

1982; Bollen & Lenox 1991; Diamantopoulos & 

Winklhofer 2001; Jarvis et al. 2003) and each 

indicator is by purpose collinear with other 

indicators. However, high inter-correlations 

among the indicators are a serious issue in the 

formative-indicator case, because it is 

impossible to identify the distinct effect of an 

indicator on the latent variable (cf. 

Diamantopoulos & Winklhofer 2001; 

MacKenzie et al. 2005; Cenfetelli & Bassellier 

2009). The researcher can control for indicator 

collinearity by assessing the size of the 

tolerance statistics (1 -   
 ), where   

  is the 
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coefficient of the determination in predicting 

variable Xj (cf. Cenfetelli & Bassellier 2009). 

Inverse expression of the tolerance statistics is 

the variance inflation factor (VIF), which has 

different standards of threshold values that 

range from 3.33 to 10.00, with lower values 

being better (e.g., Diamantopoulos & Siguaw 

2006; Hair et al 2010; Cenfetelli & Bassellier 

2009). 

The multi-item measures can be created by 

the scale developed or the index construction. 

Traditional scale development guidelines will be 

followed if the researcher conceptualizes the 

latent construct as giving rise to its indicators, 

and therefore viewed as reflective indicators to 

the construct. This procedure is based on the 

intercorrelations among the items, and focuses 

on common variance, unidimensionality and 

internal consistency (e.g., Diamantopoulos & 

Siguaw 2006; Anderson & Gerbing 1982; 

Churchill 1979, Nunnally & Bernstein 1994). 

The index development procedure will be 

applied if the researcher conceptualizes the 

indicators as defining phenomenon in relation to 

the latent construct, and therefore will be 

considered as formative indicators of the 

construct. Index construction is based on 

explaining unobserved variance, considers 

multicollinearity among the indicators and 

underlines the importance of indicators as 

predictor rather than predicted variables (e.g., 

Diamantopoulos & Siguaw 2006; Bollen 1984; 

Diamantopoulos & Winklhofer 2001; 

MacCallum & Browne 1993).                

The mixed case is represented by Figure 

3. The researcher can create a model that uses 

both formative and reflective indicators. It is 

possible for a structural model to have one type 

of latent construct at the first-order (latent 

construct) level and a different type of latent 

construct at the second-order level (Fornell & 

Bookstein 1982; MacKenzie et al. 2005; 

Diamantopoulos & Siguaw 2006; Wetzels et al. 

2009).  

Figure 3 – Type C: Latent constructs with 

reflective and formative indicators 

 

 

In other words, the researcher can combine 

different latent constructs to form a hybrid 

model (Edwards & Bagozzi 2000; McDonald 

1996; Tenenhaus et al. 2005). Development of 

this model type depends on the underlying 

causality between the constructs and indicators, 

as well as the nature of the theoretical concept. 

The researcher should model exogenous 

constructs in the formative mode and all 

endogenous constructs in the reflective mode, 

(i) if one intends to explain variance in the 

unobservable constructs (Fornell & Bookstein 

1982; cf. Wetzels et al. 2009); and (ii) in case of 

weak theoretical background (Wold 1980). 

Conducting a VBSEM approach in this model, 

using a PLS algorithm, is equal to redundancy 

analysis (Fornell et al. 1988; cf. Chin 1998b), 

because the mean variance in the endogenous 

construct is predicted by the linear outputs of 

the exogenous constructs.  

 

2.2.2. Reliability assessment  

The scale development paradigm was 

established by Churchill’s (1979) work as seen 

in the management measurement literature. This 

management measurement paradigm has been 

investigated and improved by numerous 
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research studies and researchers, with special 

emphasis on the reliability and validity of 

survey research indicators and measures (e.g., 

Peter 1981; Anderson & Gerbing 1982; Fornell 

& Bookstein 1982; Churchill & Peter 1984; 

Finn & Kayande 2004, etc.). Any quantitative 

research must be based on accuracy and 

reliability of measurement (Cronbach 1951). A 

reliability coefficient demonstrates the accuracy 

of the designed construct (Cronbach 1951; cf. 

Churchill & Peter 1984) in which certain 

collection of items should yield interpretation 

regarding the construct and its elements. 

It is highly likely that no other statistic has 

been reported more frequently in the literature 

as a quality indicator of test scores than 

Cronbach’s (1951) alpha coefficient (Sijtsma 

2009; Shook et al. 2004). Although Cronbach 

(1951) did not invent the alpha coefficient, he 

was the researcher who most successfully 

demonstrated its properties and presented its 

practical applications in psychometric studies. 

The invention of the alpha coefficient should be 

credited to Kuder and Richardson (1937), who 

developed it as an approximation for the 

coefficient of equivalence, and named it rtt(KR20); 

and Hoyt (1941), who developed a method of 

reliability based on dichotomous items, for 

binary cases where items are scored 0 and 1 (cf. 

Cronbach 1951; Sijtsma 2009). Guttman (1945) 

and Jackson and Ferguson (1941) also 

contributed to the development of Cronbach’s 

version of the alpha coefficient, by further 

development of data derivations for Kuder and 

Richardson’s rtt(KR20) coefficient, using the same 

assumptions but without stringent expectations 

on the estimation patterns. The symbol α was 

introduced by Cronbach (1951, p. 299) “… as a 

convenience. ‘Kuder-Richardson Formula 20’ is 

an awkward handle for a tool that we expect to 

become increasingly prominent in the test 

literature”. Cronbach’s α measures how well a 

set of items measures a single unidimensional 

construct. In other words, Cronbach’s α is not a 

statistical test, but a coefficient of an item’s 

reliability and/or consistency. The most 

commonly accepted formula for assessing the 

reliability of a multi-item scale could be 

represented by: 

(5)     (
 

   
) (   

∑   
  

   

  
 )  

where N represents the item numbers,   
  is 

the variance of the item i and   
  represents the 

total variance of the scale (cf. Cronbach 1951; 

Peter 1979; Gatignon 2003). In the standardized 

form, alpha can be calculated as a function of 

the total items correlations and the inter-item 

correlations: 

(6)     
  ̅

 ̅ (   ) ̅ 
  

where N is item numbers, c-bar is the 

average item-item covariance and v-bar is the 

average variance (cf. Gerbing & Anderson 

1988). From this formula it is evident that items 

are measuring the same underlying construct, if 

the c-bar is high. This coefficient refers to the 

appropriateness of item(s) that measure a single 

unidimensional construct. The recommended 

value of the alpha range is from 0.6 to 0.7 (Hair 

et al. 2010; cf. Churchill 1979; Petter 1979), but 

in academic literature a commonly accepted 

value is higher than 0.7 for a multi-item 

construct and 0.8 for a single-item construct. 

Academic debate on the pales and usefulness 

of several reliability indicators, among them 

Cronbach’s α, is unabated in the psychometric 

arena, but this debate is practically unknown 

and unattended in the management community. 

The composite reliability, based on a coefficient 

alpha research paradigm, cannot be a unique 

assessment indicator because it is limited by its 

research scope (Finn & Kayande 1997) and is 

an inferior measure of reliability (Baumgartner 

& Homburg 1996). Alpha is a lower bound to 
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the reliability (e.g., Guttman 1945; Jackson & 

Agunwamba 1977; Ten Berge & Sočan 2004; 

Sijtsma 2009) and is an inferior measure of 

reliability in most empirical studies 

(Baumgartner & Homburg 1996). Alpha is the 

reliability if variance is zero for all i-th ≠ j-th, 

which implies essential τ-equivalence among 

the items, but this limitation is not very common 

in practice (Novick & Lewis 1967; Ten Berge & 

Sočan 2004; Sijtsma 2009). 

We shall now discuss several alternatives to 

the alpha coefficient that are not well-known in 

practical applications and the management 

community. The reliability of the test score X in 

the population is denoted by ρxx’. It is defined as 

the product-moment correlation between scores 

on X and the scores on parallel test scores X’ 

(Sijtsma 2009). From the psychometric studies, 

we have a well-known: 

(7)  0 ≤ ρxx’ ≤ 1 

and 

(8)  ρxx’ = 1 – 
  

 

  
   

where   
  represents variance of the random 

measurement error and   
  represents variance 

of the test score. It is evident from equation (8) 

that the reliability can be estimated if (i) two 

parallel versions of the test are analyzed; and 

(ii) the error variance is available (Sijtsma 2009; 

Gatignon 2003). These conditions are not 

possible in many practical applications. Several 

reliability coefficients have been proposed as a 

better solution for the data from a single test 

administrator (Guttman 1945; Nunnally & 

Bernstein 1994; Sijtsma 2009), such as the GLB 

and Guttman’s λ4 coefficient. 

 The greatest lower bound (GLB) 

represents the largest value of an indicator that 

is smaller than each of the indicators in a set of 

constructs. The GLB solution holds by finding 

the nonnegative matrix CE that is positive 

semidefinite (PSD): 

(9)  GLB = 1 – 
   (  )

    ( )
  

where CE represents the inter-item error 

covariance matrix. Equation (9) represents the 

GLB under the limitation that the sum of error 

variances correlate zero with other indicators 

(Sijtsma 2009), because it is the greatest 

reliability that can be obtained using an 

observable covariance matrix.   

 Guttman’s λ4 reliability coefficient is 

based on the split-half lower bounds paradigm. 

The difference between Guttman’s λ4 and the 

traditional “corrected” split-half coefficient is 

that it uses estimation without assumptions of 

equivalence. The split-half lower bound to 

reliability, with assumption of experimentally 

independent parts (Guttman 1945), is defined by 

(10)  λ4 = n (   
  

     
 

  
 ) 

 where σ
2

i and σ
2

j represent the respective 

variances of the independent parts and n 

represents the number of parts to be estimated. 

Guttman (1945) has proved that λ4 is a better 

coefficient in comparison to the traditional 

“corrected” split-half coefficient, and that alpha 

coefficient, in Guttman (1945) notated as λ3, is 

lower bound to λ4. 

 The relationships among different 

reliability indicators are: 

(11)   0 ≤ alpha (λ3) ≤ λ4 ≤ GLB ≤ ρxx’ ≤ 1 

   This expression is true, because we 

know from Guttman (1945) that alpha (λ3) ≤ λ4, 

from Jackson and Agunwamba (1977) that λ4 ≤ 

GLB, and from Ten Berge and Sočan (2004) 

that GLB ≤ ρxx’ ≤ 1. The alpha and Guttman’s λ 

can be estimated using the SPSS, and the GLB 

can be calculated by the program MRFA2 (Ten 
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Berge & Kiers 2003; cf. Ten Berge & Kiers 

1991), which is available from 

www.ppsw.rug.nl/~kiers/.      

From a research point of view the composite 

reliability, based on Cronbach’s so-called alpha 

indicator, cannot solely be an assessment 

indicator because it is limited by its scope only 

on the scaling of person, rather than on the 

scaling of objects such as firms, advertisements, 

brands, etc. (e.g., Peter 1979; Finn & Kayande 

1997). The generalizability theory (G-theory) 

introduced by Cronbach and colleagues (1963, 

1972) and measured by the coefficient of 

generalizability includes wider management 

facets and takes into account many sources of 

error in a measurement procedure. The G-theory 

represents a multifaceted application of 

measurement (Cronbach et al. 1972; Peter 1979; 

Finn & Kayande 1997) that generalizes over the 

scaling of persons in the population and focuses 

on the scaling of objects such as organizations, 

brands, etc. The measurement in G-theory is 

conducted by variation from multiple 

controllable sources, because random effects 

and variance elements of the model are 

associated with multiple sources of variance 

(Peter 1979; Finn & Kayande 1997). The 

coefficient of generalizability is defined by the 

estimate of the expected value of ρ
2
 (Cronbach 

et al. 1972): 

(12)  E ̂2
 = 

               
 

               
                   

   

where σ
2

us represents the variance component 

related to an object of measurement, and σ
2

re 

represents the sum of variance that affects the 

scaling of the object of measurement. This 

measure has no wider application in the 

management community due to its robust 

measurement metrics and high cost. There is 

some evidence in the literature (e.g., Finn & 

Kayande 1997) that a piece of such research, 

with 200 respondents, may cost approximately 

10,000 US$ (as of 1995). 

In summary, researchers should be aware 

that conventional reporting of the alpha 

coefficient has empirical and conceptual 

limitations. We recommend that authors should 

make additional efforts to report Guttman’s λ 

(from SPSS, same as alpha) together with the 

alpha coefficient. Application of the GLB 

coefficient in management practice will be 

highly appreciated and rewarded. 

Cohen’s ƒ
2
. The researcher can evaluate a 

VBSEM model by assessing the R-squared 

values for each endogenous construct. This 

procedure can be conducted because the case 

values of the endogenous construct are 

determined by the weight relations (Chin 

1998b). The change in R-squares will show the 

influence of an individual exogenous construct 

on an endogenous construct. The effect size ƒ
2 

has been used as a reliability measure in the 

VBSEM applications, but researchers do not 

address properly the role of effect size effects in 

the model. It is usual practice to report this 

effect directly from statistical program (such as 

SmartPlS), but this is not an automatic function 

and statistical power of the model must be 

calculated additionally. This indicator is 

proposed by Cohen (1988) and can be 

“calculated as the increase in R
2
 relative to the 

proportion of variance of the endogenous latent 

variable that remains unexplained” (Cohen 

1988; 1991; cf. Chin 1998b). To estimate the 

overall effect size of the exogenous construct, 

the following formula can be used: 

(13)        
  

  

  –   
  

 

Another way to calculate this indicator is 

with a power analysis program such as GPower 

3.1. The researcher can easily estimate effect 

size ƒ
2
 using partial R-squares (Faul et al. 2007; 
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2009). Cohen (1988; 1991) has suggested that 

values of 0.02, 0.15 and 0.35 have weak, 

medium or large effects, respectively. 

 Composite reliability ρc indicator. The 

VBSEM models in reflective mode should 

apply the composite reliability ρc measure or 

Cronbach’s α (and/or Guttman’s λ4 and GLB), 

as a control for internal consistency. The 

composite reliability ρc indicator was developed 

by Werts, Linn and Jöreskog (1974) and can be 

interpreted in the same way as Cronbach’s α 

(Chin 1998b; Henseler et al. 2009). This 

procedure applies the normal partial least square 

output, because it standardizes the indicators 

and latent constructs (Chin 1998b). 

(14)      
(∑     )

 

(∑     )
   ∑    (   )

  

where λij represents the component loading 

on an indicator by the j-th latent construct and 

Var(εij) = 1 – λij
2
. The ρc has more accurate 

parameter estimates in comparison to 

Cronbach’s α, because this indicator does not 

assume tau equivalency among the constructs. 

Werts et al. (1974) have argued that the 

composite reliability ρc is more appropriate to 

apply to VBSEM applications than Cronbach’s 

α, because Cronbach’s α may produce serious 

underestimation of the internal consistency of 

latent constructs. This is the case because 

Cronbach’s α is based on the assumption that all 

indicators are equally reliable. The partial least 

square procedure ranks indicators according to 

their reliability (Henseler et al. 2009) and makes 

them a more reliable measure in the VBSEM 

application. The composite reliability ρc is only 

applicable in the latent constructs with reflective 

measures (Chin 1998b). 

   

Table 4: Preferred value of the Cronbach’s Alpha, ρc indicator, Guttman’s λ, GLB and Cohen’s ƒ-

square indicators 

 
Cronbach’s α & ρc indicator (and / 

or Guttman’s λ and GLB) 
Cohen’s ƒ-square 

Preferred value 

i)  0.60 – 0.70 for multi-item 

constructs (minimum) 

ii)  ≥ 0.70 preferred for multi-item 

constructs 

iii)  ≥ 0.80 for single-item constructs 

(minimum) 

i)   0.02 – weak effect 

ii)  0.15 – medium effect 

iii)  0.35 – strong effect                      

 

 

 

2.2.3. Validity assessment  

The ongoing discussion in the measurement 

literature (e.g., Rossiter 2002, 2005; 

Diamantopoulos & Siguaw 2006; Finn & 

Kayande 2005) on procedures for the 

development of scales and indexes to measure 

constructs in management is beyond the scope 

of this manuscript. We only want to draw 

attention at this point to the validity and 

reliability of applied constructs. Validation 

represents the process of obtaining the scientific 

evidence for a suggested interpretation of 

quantitative results from a questionnaire by the 

researcher.  

In research practice, validity is very often 

assessed together with reliability. This process 
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represents the extent to which a measurement 

concept obtains consistent estimations. From a 

statistical point of view, test validity represents 

the degree of correlation between the model and 

statistical criterion. The validity procedure has 

gained greater importance in SEM application 

than in other statistical instruments, because i) 

this procedure makes an important distinction 

between the measurement and the structural 

model; and ii) this application provides a more 

stringent test of discriminant validity, construct 

reliability, etc. (e.g., Bagozzi 1980; Fornell & 

Larcker 1981; Gerbing & Anderson 1988; Jarvis 

et al. 2003; cf. Peter 1979; Rossiter 2002).  

Construct validity is a necessary condition 

for testing the hypothesized model (Gerbing & 

Anderson 1988), because “construct validity 

pertains to the degree of correspondence 

between constructs and their measures” (Peter 

1981, p. 133; cf. Curtis & Jackson 1962; 

Bagozzi & Phillips 1982). In other words, 

construct validity represents the extent to which 

operationalizations of a latent construct 

measures the underlying theory. Evidence of 

construct validity represents empirical support 

for the theoretical interpretation of the 

constructs. The researcher must assess the 

construct validity of the model, without which 

one cannot estimate and correct for the 

influences of measurement errors that may 

deteriorate the estimates of theory testing 

(Bagozzi & Phillips 1982; Bagozzi et al. 1991). 

However, researchers must be aware that 

construct validity is applicable only with 

reflective constructs. The fidelity of formative 

measures in CBSEM, except in some limited 

cases such as concurrent or predictive validity 

(Bagozzi 2007), is hard to assess and difficult to 

justify in terms of the conceptual meaning of a 

model.   

Discriminant validity represents the 

distinctive difference among the constructs. In 

other words, discriminant validity shows the 

degree to which the indicators for each of the 

constructs are different from each other (cf. 

Churchill 1979; Bagozzi & Phillips 1982). The 

researcher can assess the discriminant validity 

by examining the level of correlations among 

the measures of independent constructs. A low 

intra-construct correlation is a sign of 

discriminant validity. The average variance 

extracted (AVE) for each construct should be 

greater than squared correlations among the 

measures of a construct in order to ensure the 

discriminant validity (Fornell & Larcker 1981).  

Nomological aspects of validation include 

connecting the index to other constructs with 

which it should be connected, for instance, 

antecedents and/or consequences 

(Diamantopoulos & Winklhofer 2001; Jarvis et 

al. 2003; cf. Gerbing & Anderson 1988; Law et 

al. 1998). Nomological validity can be assessed 

by estimating the latent construct and testing 

whether correlations between antecedents and 

consequences are significantly higher than zero 

(MacKenzie et al. 2005). This validation is 

especially important when certain indicators are 

eliminated from the constructs and the 

researcher has to establish whether new 

constructs behave in an expected way. In other 

words, the nomological net of indicators should 

not differ in the reflective mode and may differ 

in the formative mode (e.g., Bollen & Lenox 

1991; Jarvis et al. 2003).  

 

2.2.4. Type of study  

The management studies that investigate 

organizational constructs, such as 

market/consumer orientation, sales force, etc., 

and drivers of success are by their nature theory 

predictive rather than theory confirmatory 

studies. These constructs are determined by a 

combination of factors that cause specific 
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phenomenon and their indicators should be 

created in a formative mode (Fornell & 

Bookstein 1982; Chin 1998b). This implies that 

this type of study is better with VBSEM, but 

decisions about the approach should be made 

after careful examination of all elements that 

influence the two streams.   

However, behavioral studies that are based 

on psychometric analysis of factors such as 

attitudes, consumer intentions, etc., are seen as 

underlying factors that confirm a specific 

theory. They “give rise to something that is 

observed” (Fornell & Bookstein 1982, p. 442) 

and should be created in a reflective mode. The 

researcher should start the conceptual 

examination from the CBSEM point of view. 

 

2.2.5. The structure of unobservables 

The structure of unobservables in the SEM 

constructs is a primary difference between 

CBSEM and VBSEM, because CBSEM 

specifies the residual structure and VBSEM 

“specifies the estimates of the unobservables 

explicitly” (Fornell & Bookstein 1982, p. 449). 

In other words, the underlying constructs are 

modeled as indeterminate in CBSEM and 

determinate in VBSEM.  

Indeterminacy can create difficulties for 

confirmatory studies because indeterminate 

factors have improper loadings (Fornell & 

Bookstein 1982) and assignment of surplus 

variance to the unobservable may lead to biased 

measurement results. The structure of 

unobservables in the VBSEM approach is 

determinate. The PLS procedure tries to 

minimize the variance of all dependent 

variables, because parameter estimates are 

obtained by minimizing the residual variance in 

latent and observed variables (Chin 1998b). 

Bollen (1989b) has noted that the determinate 

nature of the VBSEM approach avoids 

parameter identification problems, which can 

occur in the CBSEM approach. 

 

2.2.6. Input data  

The CBSEM approach is based on a 

covariance or correlation input matrix as input 

data. The literature (e.g., Bollen 1989b; 

Baumgartner & Homburg 1996) has suggested 

that researchers in most cases apply maximum 

likelihood (ML), unweighted least squares 

(ULS) and generalized least squares (GLS) that 

are scale invariant and estimate scale free. This 

implies that a choice between covariance and 

correlation input matrix has no effect on overall 

goodness-of-fit and parameter estimates, but 

standard errors can be biased if the correlation 

input matrix has been used (Baumgartner & 

Homburg 1996). Another issue is the 

application of correlation input matrices as if 

they were covariance matrices, because 

estimated standard errors are biased (Cudeck 

1989; Tomarken & Waller 2005). A general 

suggestion for researchers is to use a covariance 

input matrix as a preferred matrix type (e.g., 

Cudeck 1989; Jöreskog & Sörbom 1996). As 

input data, the VBSEM approach uses 

individual-level raw data. The VBSEM 

parameter estimation is based on a least square 

algorithm.      

 

2.3. Sample 

 

A sample should represent a relevant part of 

reality. Identification and determination of the 

proper reality is a crucial step in the research 

set-up. There are many research studies in 

management that operate without a clear 

population of objects and an indication of the 
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sample size under study. For instance, a 

researcher studies the problem of innovation in 

management. He/she conducts (or attempts to 

conduct) interviews with a great number of 

managers (>1000) from different industries, 

different management levels, different positions 

in companies, and different working and life 

experience and expectations. The first issue is 

that of objective reality. What does the 

researcher study? The great population 

diversification leads to an inconsistent sample 

and biased estimation about the researched 

phenomenon, because of very heterogeneous 

variables (industry, position, experience, etc.). 

The second issue is sampling. Identifying the N-

number of respondents to which the researcher 

can send his/her questionnaire is not the reality 

he/she wants to investigate. The researcher 

wants to indentify the sample that is a 

representative part of objective reality. In the 

self-reported studies, which deal with cross-

sectional data, the acceptable threshold level is 

15% (Hair et al. 2010).  

The researcher should consider the following 

two questions regarding the appropriateness of 

the employed sample size and model. Firstly, 

what is the proper sample size, in comparison to 

the number of observations, which will 

represent business reality? Secondly, what is the 

appropriate number of indicators to be 

estimated, in comparison with the obtained 

sample size, in a proposed model (cf. 

Baumgartner & Homburg 1996)? 

Sample size of the model differs in two 

streams. The importance of sample size lies in 

the fact that it serves as a basis for estimation of 

the error term and the most important question 

is how large a sample must be to obtain credible 

results (Hair et al. 2010). There is no general 

rule of thumb or formula which can give an 

exact solution for the necessary number of 

observations in SEM. 

The adequate size of a sample in the CBSEM 

approach depends on several factors (cf. Hair et 

al. 2010; Marcoulides & Saunders 2006) such as 

i) multivariate normality; ii) applied estimation 

technique (cf. Baumgartner & Homburg 1996), 

because there can be applied maximum 

likelihood estimation (MLE), weighted least 

squares (WLS), generalized least squares 

(GLS), asymptotically distribution free (ADF) 

estimation, etc. (cf. Jöreskog & Sörbom 1996; 

Byrne 1998; Baumgartner & Homburg 1996; 

Hu et al. 1992; Sharma et al. 1989); iii) model 

complexity, because more complex models 

require more observations for the estimation; iv) 

missing data, because it reduces the original 

number of cases; v) communality in each 

construct, i.e. the average variance extracted in 

a construct. A great number of simulation 

studies on CBSEM (usually the Monte Carlo 

simulation) report estimation bias, improper 

results and non-convergence problems with 

respect to sample size (e.g.; Henseler et al. 

2009) and inadequate indicator loadings 

(Reinartz et al. 2009). In general, the researcher 

can apply the necessary sample size rule, 

bearing in mind the above limitations and 

suggestions, if the ratio of sample size to free 

model parameters is at least five observations to 

one free parameter for the minimum threshold 

level and ten to one for the optimum threshold 

level (Bentler & Chou 1987; cf. Baumgartner & 

Homburg 1996; Marcoulides & Saunders 2006; 

Hu et al. 1992; Peter 1979). Baumgartner and 

Homburg (1996) have shown that the average 

ratio of sample size to number of parameters 

estimated in management literature (from 1977-

1994) is 6.4 to 1. Interested readers are referred 

to MacCallum et al. (2001), Baumgartner and 

Homburg (1996) and Hair et al. (2010) for a 

more comprehensive discussion.      

The VBSEM approach is more robust and 

less sensitive to sample size, in comparison to 

the CBSEM approach. For instance, Wold 
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(1989) has successfully conducted a study with 

10 observations and 27 latent constructs; Chin 

and Newsted (1999) have conducted a Monte 

Carlo simulation study on VBSEM in which 

they have found that the VBSEM approach can 

be applied to a sample of 20 observations. In 

general, the rule of thumb that researchers can 

use in VBSEM runs as follows (Chin 1998b): i) 

10 observations multiplied with the construct 

that has the highest number of indicators; ii) the 

endogenous construct with the largest number 

of exogenous constructs, multiplied by ten 

observations. However, the researcher should be 

careful when employing the small sample size 

cases in the VBSEM study, because the PLS 

technique is not the silver bullet (cf. 

Marcoulides & Saunders 2006) for any level of 

sample size, even though it offers “soft” 

assumptions on data distribution and sample 

size. 

 

2.4. Goodness-of-fit 

 

2.4.1. Goodness-of-fit in VBSEM 

A model evaluation procedure in VBSEM is 

different in comparison to the CBSEM 

approach. The VBSEM application is based on 

the partial least squares procedure that has no 

distributional assumptions, other than predictor 

specification (Chin 1998b). Traditional 

parametric-based techniques require identical 

data distribution. Evaluation of the VBSEM 

models should apply the measures that are 

prediction oriented rather than confirmatory 

oriented based on covariance fit (Wold 1980; 

Chin 1998b). 

The researcher has to assess a VBSEM 

model evaluating the model predictiveness 

(coefficient of determination, Q
2
 predictive 

relevance and average variance extracted – 

AVE) and the stability of estimates applying the 

resampling procedures (jack-knifing and 

bootstrapping). 

Assessment of the VBSEM model starts with 

evaluation of the coefficient of determination 

(R
2
) for the endogenous construct. The 

procedure is based on the case values of the 

endogenous constructs that are determined by 

the weight relations and interpretation is 

identical to the classical regression analysis 

(Chin 1998b). For instance, Chin (1998b, p. 

337) has advocated that the R-squared values 

0.63, 0.33 and 0.19, in the baseline model 

example, show substantial, moderate and weak 

levels of determination, respectively.   

The second element of the VBSEM 

assessment is that of predictive relevance, 

measured by the Q-squared indicator. The Q
2
 

predictive relevance indicator is based on the 

predictive sample reuse technique originally 

developed by Stone (1974) and Geisser (1975; 

1974). The VBSEM adaptation of this approach 

is based on a blindfolding procedure that 

excludes a part of the data during parameter 

estimation and then calculates the excluded part 

using the estimated parameters. In other words, 

this procedure uses a block of N cases and M 

indicators and takes out a part of the N by M 

data points. The estimation is conducted by 

using the omission distance d in which every d 

data point is excluded and calculated separately. 

This continues until the procedure reaches the 

end of the data matrix (cf. Wold 1982; Chin 

1998b).     

The predictive relevance indicator is 

represented by: 

(15)        
∑      

∑      
  

where Q
2
 represents a fit between observed 

values and values reconstructed by the model. 

The sum of squares of prediction errors (SSE) 
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represents the estimated values after the data 

points were omitted. The sum of squares of 

observations (SSO) represents the mean value 

for prediction. Q
2
 values above zero (Q

2
>0) 

indicate that observed values are well 

reconstructed and a model has predictive 

relevance; Q
2 

values below zero (Q
2
<0) indicate 

that observed values are poorly reconstructed 

and that the model has no predictive relevance 

(Fornell & Bookstein 1982; Chin 1998b; 

Henseler et al. 2009). The relative impact of the 

predictive relevance can be assessed by the q
2
 

indicator. This measure can be calculated: 

(16)  q
2
 = (Q

2
 / 1 – Q

2
)  

where Q
2 

represents the above-presented 

predictive relevance. The assessed variables of 

the model reveal a small impact of the 

predictive relevance if q
2
 ≤ .02, a medium 

impact of the predictive relevance if q
2
 has a 

value between .02 and .15; and a strong impact 

of the predictive relevance if q
2
 ≥ .35. Interested 

readers are referred to Wold (1982), Fornell and 

Bookstein (1982) and Chin (1998b) for further 

discussion.       

The average variance extracted (AVE) 

represents the value of variance captured by the 

construct from its indicators relative to the value 

of variance due to measurement errors in that 

construct. This measure has been developed by 

Fornell and Larcker (1981). The AVE is only 

applicable for type A models; i.e. models with 

reflective indicators, just as in the case of the 

composite reliability measure (Chin 1998b).  

The average variance extracted ρη for the 

construct can be calculated as (Fornell & 

Larcker 1981): 

(17)        
∑    

 

∑    
   ∑    (  )

 

where λi is the component loading to an 

indicator and Var(εi) = 1 – λi
2
. If the average 

variance extracted ρη is bigger than 0.50, the 

variance due to measurement error is smaller 

than the variance captured by the construct η, 

and validity of the individual indicator (yi) and 

construct (η) is well-established (Fornell & 

Larcker 1981). The AVE should be higher than 

0.50, i.e. more than 50% of variance should be 

captured by the model. 

VBSEM parameter estimates are not efficient 

as CBSEM parameter estimates and resampling 

procedures are necessary to obtain estimates of 

the standard errors (Anderson & Gerbing 1988). 

The stability of estimates in the VBSEM model 

can be examined by resampling procedures such 

as jack-knifing and bootstrapping. Resampling 

estimates the precision of sample statistics by 

using the portions of data (jack-knifing) or 

drawing random replacements from a set of data 

blocks (bootstrapping) (cf. Efron 1979; 1981). 

Jack-knifing is an inferential technique used to 

obtain estimates by developing robust 

confidence intervals (Chin 1998b; Tenenhaus et 

al. 2005; Rigdon 2005). This procedure assesses 

the variability of the sample data using 

nonparametric assumptions and “parameter 

estimates are calculated for each instance and 

the variations in the estimates are analyzed” 

(Chin 1998b, p. 329). Bootstrapping represents 

a nonparametric statistical method that obtains 

robust estimates of standard errors and 

confidence intervals of a population parameter. 

In other words, the researcher estimates the 

precision of robust estimates in the VBSEM 

application.  

The procedure described in this section is 

useful for the assessment of the structural 

VBSEM model. Detailed description and 

assessment steps of the outer and inner models 

are beyond the scope of this manuscript. Refer 

to Chin (1998b), Tenenhaus et al. (2005) and 

Henseler et al. (2009) for a more thorough 
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discussion about outer and inner model 

assessments.    

 

2.4.2. Goodness-of-fit in CBSEM 

CBSEM procedure should be conducted by 

the researcher in three phases. The first phase is 

the examination of i) estimations of causal 

relationships; and ii) goodness-of-fit between 

the hypothesized model and observed data. The 

second phase involves model modifications in 

order to obtain the model with better fit or more 

parsimonious estimations. The third phase is 

justification that a nested model is superior in 

comparison to the original one (cf. Anderson & 

Gerbing 1982). 

In the first phase, the researcher begins by 

examining the estimated value of individual 

paths among latent constructs. The statistical 

significance of individual path coefficients is 

established by the t-values or z-values 

associated with structural coefficients 

(Schreiber et al. 2006). The second step is 

examination of the goodness-of-fit between the 

hypothesized model and observed data.  

Covariance-based structural equation 

modeling has no single statistical test or single 

significant threshold that leads to acceptance or 

refusal of the model estimations. It is, rather, the 

opposite – it has developed a great number of 

goodness-of-fit measures that assess the overall 

results of the model from different perspectives: 

overall fit, comparative fit and model 

parsimony. Measures of absolute fit determine 

the degree to which the overall model predicts 

the observed covariance/correlation matrix 

(Hair et al. 2010).  

There is no rule of thumb for what model fit 

serves as the threshold in covariance-based 

structural equation modeling. There are attempts 

in the literature (e.g., Bentler & Bonett 1980; 

Hu & Bentler 1999; etc.) to obtain “golden 

rules”, “silver metrics” or “rules of thumb” for 

the assessment of CBSEM. Setting “rules of 

thumb” is popular among researchers, because 

an established threshold level allows easy and 

fast evaluation of the covariance-based models. 

The traditional cutoff values in practice, for 

incremental fit measures ≥ 0.90, have little 

statistical justification and are mostly based on 

intuition (Marsh et al. 2004; cf. Baumgartner & 

Homburg 1996; Tomarken & Waller 2005). 

This issue has also been addressed by Hu and 

Bentler (1998, 1999), who have suggested new, 

more stringent guidelines. According to these 

guidelines, the goodness-of-fit measures should 

be evaluated at ≥ 0.95 levels, but researchers 

should be aware of possible limitations in the 

application and appropriateness of these in 

relation to the area of research (e.g. 

psychometrics vs. organizational studies) and 

the low level of generalizability of this approach 

(cf. Marsh & Hau 1996).  

Table 5 represents measures of absolute fit, 

incremental fit and model parsimony in detail. 

For detailed technical assessment and 

explanations, interested readers are referred to 

Marsh and Hau (1996), Hu and Bentler (1999); 

Kenny and McCoach 2003.   

Overall (absolute) fit measures (indices). The 

researcher can apply several overall fit 

measures, such as likelihood-ratio chi statistics, 

degrees of freedom, GFI, AGFI, RMSR, 

RMSEA, etc. The only statistically based 

measure of goodness-of-fit in the CBSEM 

application is the likelihood-ratio chi-squared 

(χ
2
) statistic. According to Fornell and Larcker 

(1981), the χ
2
 statistic compares the fit between 

the covariance matrices for the observed data 

and theoretically created model.  
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Table 5: Measures of absolute fit, incremental fit and model parsimony 

Topic Measure Preferred value 
O

v
er

al
l 

fi
t 

m
ea

su
re

s 

Chi-square (χ
2
) 0.05 ≥ p ≤ 0.20  

degrees of freedom (df) 

no p.v., the researcher uses for 

comparative and computational 

purposes  

Chi-square / df ratio  < 2.0 

Goodness-of-fit index (GFI) ≥ 0.90 

Root mean square residual (RMSR) ≤ 0.08 

Root mean square error of 

approximation (RMSEA) 

no threshold level, practice suggest ≤ 

0.08 

Confidence interval of RMSEA min 90% 

C
o
m

p
ar

at
iv

e 
fi

t 
m

ea
su

re
s 

Comparative fit index (CFI) 
0.0 – 1.0, larger values indicate higher 

levels of G-of-F 

Incremental fit index (IFI) 
0.0 – 1.0, larger values indicate higher 

levels of G-of-F 

Tucker – Lewis index (TLI / NNFI) ≥ 0.90 

Relative non-centrality index (RNI) ≥ 0.90 

Relative fit index (RFI) ≥ 0.90 

Normed fit index (NFI) ≥ 0.90 

M
o
d
el

 

p
ar

si
m

o
n
y
 Adjusted goodness-of-fit index (AGFI) ≥ 0.90 

Parsimony normed fit index (PNFI) Higher value, better fit 

Parsimony ratio ψ  
0.0 – 1.0, higher values indicate better 

model parsimony  

 

The researcher investigates the non-

significant difference between the actual and 

predicted matrices (cf. Fornell 1983; Chin 

1998a; Hair et al. 2010; Gatignon 2003), 

because the theoretical model strives to account 

for all the covariance among the latent 

constructs. In other words, we are looking for 

the non-significant χ
2
, which is opposite to 

common statistical logic where the researcher is 

striving to obtain a model that is statistically 

significant at a certain level, usually at 1 or 5%. 

Indications that actual and predicted input 

covariance matrices are not statistically different 

might be obtained if the χ
2
 value is 0.05 ≥ p ≤ 

0.20 (Fornell 1983; Hair et al. 2010; Marsh & 

Hau 1996; cf. Bagozzi & Phillips 1982). Some 

recent studies (e.g., Marsh et al. 2004; Fan & 

Sivo 2009) have suggested that χ
2
 should be 
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used for statistical testing of a model fit, rather 

than for descriptive use of a model fit 

assessment.               

The degrees of freedom (df) of an estimate 

are the amount of independent pieces of 

information available to estimate a model, i.e. 

the number of parameters that are free to vary in 

a model. The fundamental difference between 

SEM and other statistical techniques is in fact 

that df in the SEM application is based on the 

size of the covariance matrix (Hair et al. 2010), 

which is based on the number of indicators, and 

not on the sample size.   

The goodness-of-fit index (GFI) is a non-

statistical index that measures the overall degree 

of model fit. The fit ranges from very poor 

(GFI=0.0) to perfect (GFI=1.0). The adjusted 

goodness-of-fit index (AGFI) differs from the 

GFI in terms of its adjustment for the number of 

degrees of freedom in the model (Byrne 1998). 

These two indices can be understood as absolute 

indices of fit because they compare the 

hypothesized model with no model at all (Byrne 

1998) as well as an index of parsimony for the 

overstated parameter number and relationships. 

Hair et al. (2010) have advocated that higher 

values indicate better fit, which in practical 

application is accepted as ≥ 0.90 even though 

there is no established minimum acceptability 

level.  

The root mean square residual (RMSR) 

represents the average of the residual’s fit 

between observed and estimated input matrices 

(Hair et al. 2010; Byrne 1998). For this index 

there does not exist an official threshold level 

(Hair et al. 2010), but in the literature (Byrne 

1998) and practice the standardized RMSR ≤ 

0.08 is established. 

The root mean square error of approximation 

(RMSEA) is a measure that estimates how well 

the population non-centrality index Φ (Steiger 

1990) fits to a population covariance matrix per 

degrees of freedom (cf. Baumgartner & 

Homburg 1996; Yuan 2005) and controls the χ
2 

statistics to reject models with a large sample or 

a large number of variables (cf. Hair et al. 

2010). The purpose of the RMSEA in an SEM 

study is to adjust the complexity of the model 

and sample size. Theory does not advise as to a 

generally acceptable threshold value (Feinian et 

al. 2008), but in practice the RMSEA ≤ 0.08 is 

established. The researcher should take into 

consideration the level of the confidence 

interval.  

Comparative (incremental) fit measures. A 

great number of incremental fit measures that 

exist in the literature, and that are mostly used 

in practical CBSEM applications, are: normed 

fit index (NFI), comparative fit index (CFI), 

incremental fit index (IFI) and Tucker-Lewis 

index (TLI). The normed fit index (Bentler and 

Bonett 1980) represents a relative comparison 

between a proposed and the null model (Hair et 

al. 2010). The fit ranges from very poor 

(NFI=0.0) to perfect (NFI=1.0), with preferred 

value ≥ 0.90. This index was a “classic” 

criterion of model choice in the 1980s, until it 

became evident that the NFI underestimated the 

model fit in small samples (Byrne 1998). 

Bentler (1990) revised the normed fit index and 

proposed the comparative fit index (Byrne 

1998). The index value has a range of 0.0-1.0, 

where larger values indicate higher levels of 

goodness-of-fit. The Tucker-Lewis index 

(1973), also known as the non-normed fit index 

(NNFI), represents a measure of parsimony 

between the comparative index in the proposed 

and null models (Marsh & Hau 1996; Hair et al. 

2010). The TLI estimates a model fit per degree 

of freedom, penalizing less parsimonious 

models (Baumgartner & Homburg 1996). A 

recommended value is ≥ 0.90. The incremental 

fit index (Bollen 1989a) describes the 

parsimony of the sample size in the estimated 
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and null model. The values lie between 0.0-1.0, 

and larger values indicate higher levels of 

goodness-of-fit.   

Model parsimony. Parsimony of the SEM 

model represents comparisons among 

competing models, in which the researcher 

compares observed model fit relative to its 

complexity. A parsimony fit is estimated as the 

ratio of degrees of freedom (df) with reference 

to the total degrees of freedom (dft) available for 

the estimation (Marsh & Balla 1994; Marsh & 

Hau 1996). Parsimony ratio is represented by 

coefficient ψ: 

(19)   ψ = dfo / dft    

This equation states that the greater the 

observed degrees of freedom (dfo) are, the 

greater the parsimony ratio will be, which 

indicates the better fit of the model (cf. Marsh & 

Hau 1996; Kenny & McCoach 2003; Hair et al. 

2010). Parsimony fit indices, such as the 

adjusted goodness-of-fit index (AGFI) and 

parsimony normed fit index (PNFI), tend to 

relate model fit to model complexity, which is 

similar to the application of an adjusted R
2
 (Hair 

et al. 2010). The PNFI is used as an adjustment 

of the normed fit index (NFI). Higher values 

represent better fit and model adjustment. The 

researcher is advised not to use these indices in 

a single model as an independent measure, but 

rather as a tool to compare the fit of competing 

models.    

Competitive fit – Nested models. The primary 

goal of an SEM study is to show acceptable 

model fit, employing numerous goodness-of-fit 

indices, as well as to confirm that the tested 

model has no better theoretical alternative. 

Assessment of the competing models, which 

must be grounded in theory, can be conducted 

by comparison using incremental and parsimony 

fit measures as well as with differences in the 

likelihood-ratio chi-squared statistics when 

models are nested. The researcher can compare 

models of similar complexity, but with variation 

in terms of the underlying theoretical 

relationships (Hair et al. 2010; Schreiber et al. 

2006; cf. Boomsma 2000; Anderson & Gerbing 

1982). If a model contains the same number of 

latent constructs as a competing model, and 

alters the paths and causality among them, the 

researcher can compare nested models by 

examining the difference in chi-squared 

statistics (Δχ
2
).   

 

3. RESEARCH ILLUSTRATION 

 

We present recently published research 

papers from management literature as an 

illustration, which deal with similar research 

topic. The idea is to show the contemporary 

state of research performance using similar 

research topic, but executed by different 

researchers that apply various theoretical 

assumptions and research approaches. We 

present papers on brand loyalty / success 

published in the world-known peer reviewed 

journals such as Management Decision, Journal 

of the Academy of Marketing Science, Journal 

of Brand Management, etc. Labrecque et al. 

(2011) and Mazodier & Marunka (2011) applied 

the CBSEM approach, and Hur et al. (2011) and 

Davcik & Rundquist (2012) applied the 

VBSEM approach; presented in Table 6.   

Labrecque et al. (2011) and Mazodier & 

Merunka (2011) applied their research on a 

convenient student sample group and a very few 

indices per construct (3 – 4), which is a 

minimum requirement and gives a good factor 

loading.  
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Table 6: Research illustration 

CRITERION TOPIC ASSESSMENT HUR et al. 2011 
DAVCIK & 

RUNDQUIST 2012 

LABRECQUE et al. 

2011 

MAZODIER & 

MARUNKA 2011 

Justification of 

theoretical approach 
If YES, motivation 

YES, because of “minimal 

restrictions on sample size 

and residual distribution” (p. 

1202) 

YES, because of exploratory 

nature of the study, data 

distribution assumptions and less 

stringent sample requirements 

NO NO 

Type of the latent 

measures 
Reflective, formative or mixed Reflective Mixed 

? (Not stated, but we can 

assume reflective) 

? (Not stated, but we can 

assume reflective) 

Type of study Confirmatory, exploratory, etc. 
? (Not stated, but the nature 

of study is exploratory) 
exploratory 

? (Not stated, but the nature 

of study is exploratory) 

? (Not stated, but the nature 

of study is confirmatory) 

Reliability measures 
CBSEM 

Cronbach’s α 

 
 
 

+ + 

Guttman’s λ -- -- 

GLB -- -- 

VBSEM 
Cohen’s f2 -- + 

  
Composite reliability ρc (or α, λ or GLB) + + 

Sample size  200 58 330 449 

Sample group (consumers, firms, students, etc.) Consumers Firms  Students Students 

No. of constructs  6 7 7 7 

No. of indicators  20 37 27 21 

A
ss

es
sm

en
t 

o
f 

th
e 

m
o

d
el

 f
it

 

C
B

S
E

M
 

Overall fit measures 

Chi-square (χ2) 

  

+ + 

degrees of freedom (df) + -- 

Chi-square / df ratio  -- -- 

Goodness-of-fit index (GFI) + -- 

Root mean square residual (RMSR) -- -- 
Root mean square error of 

approximation (RMSEA) 
+ + 

Confidence interval of RMSEA -- -- 

Comparative fit 

measures 

Comparative fit index (CFI) + + 

Incremental fit index (IFI) -- -- 

Tucker – Lewis index (TLI / NNFI) + -- 

Relative non-centrality index (RNI) -- -- 

Relative fit index (RFI) -- -- 

Normed fit index (NFI) + + 

Model parsimony 

Adjusted goodness-of-fit index 

(AGFI) 
-- -- 

Parsimony normed fit index (PNFI) -- -- 

Parsimony ratio ψ  -- -- 

V
B

S
E

M
 Model 

predictiveness 

Coefficient of determination +  + 

  

Q2, predictive relevance -- + 

q2,  relative impact  -- + 

AVE + + 

Stability of 
estimates 

Jack-knifing  (yes / no) no yes 

Bootstrapping  (yes / no) yes yes 
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They failed in theoretical justification of their 

research studies, because they had not explained 

and motivated reasons to apply the CBSEM 

approach, neither the relationships between 

indicators and constructs. As a reliability 

measure, they used only Cronbach’s alpha 

indicator which is lower-bound to the reliability. 

We present a minimum requirement for the 

CBSEM study in Table 5. Labrecque et al. 

(2011) presented only chi-square, degrees of 

freedom, GFI, RMSEA, CFI, TLI and NFI; 

Mazodier & Merunka (2011) applied only chi-

square, RMSEA, CFI and NFI.  

Hur et al. (2011) studied consumers and 

applied a very few indicators per construct (3.3 

in average). This paper partly analyses 

reliability measures because they report 

composite reliability, but not report Cohen’s f
2
. 

Assessment of the model was executed only 

partially and in a poor technical manner. The 

performance of the outer model in the model 

was not discussed at all. Therefore, the readers 

cannot be sure that predictive relevance is 

achieved and relative impact is substantial in the 

model. Stability of estimates is assessed only by 

the bootstrapping, but the authors failed to 

report the jack-knifing assessment of the model. 

The study of Davcik & Rundquist (2012) is a 

good example for the VBSEM approach. They 

justified theoretical approach due to the 

exploratory nature of study, data distribution 

assumptions and less stringent sample 

requirements in comparison to the CBSEM 

approach. The authors studied firms and their 

sample size is substantially smaller than in 

studies that put a consumer in research focus or 

student samples. However, their approach 

satisfies research and technical standards. This 

study presents all required reliability measures, 

indicators of model predictiveness and stability 

of estimates.  

This short illustration shows typical research 

papers from management journals. 

Unfortunately, even recently published papers 

are executed in a weak theoretical and technical 

manner. We urge the editors and reviewers to 

pay more attention and effort to the theoretical 

justification of study, sample groups (because 

student sample cannot be useful and 

justification for theoretical generalizability) and 

poor technical performance of the reported 

studies.     

 

4.  CONCLUSIONS, LIMITATIONS 

AND OPPORTUNITIES FOR FUTURE 

RESEARCH 

 

This paper illustrates a common conceptual 

background for the variance-based and 

covariance-based SEM. Methodological 

analysis and comparison of the two SEM 

streams is the main contribution of this 

conceptual manuscript. We identified several 

common topics in our analysis. We discussed 

the covariance-based and variance-based SEM 

utilizing common topics such as (i) theory 

(theory background, relation to theory and 

research orientation); (ii) measurement model 

specification (type of latent construct, type of 

study, reliability measures, etc.); (iii) sample 

(sample size and data distribution assumption); 

and (iv) goodness-of-fit (measurement of the 

model fit and residual co/variance). 

The two research approaches have 

substantial theoretical background differences. 

The CBSEM approach is based on a priori 

knowledge about the model (Fornell & 

Bookstein 1982; Fornell 1983; Hair et al. 2010), 

because the researcher investigates the 

difference between the management reality and 

the hypothesized model. The VBSEM approach 
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is framed by the theory, but its goal is to predict 

behavior among variables. In comparison to 

CBSEM which tends to confirm the underlying 

theory, the VBSEM approach tries to give 

exploratory meaning to theoretical foundations 

of the model.  

The researcher can specify the measurement 

model in three modes: reflective, formative and 

mixed. Between the reflective- and formative-

indicator constructs exist important 

methodological and practical differences. 

Almost 30% of the models published in the top 

marketing journals were mistakenly specified 

(Jarvis et al. 2003), because the researchers did 

not pay attention to the appropriate specification 

of the measurement model and many formative 

constructs were incorrectly specified in the 

reflective mode. There is a debate in the 

academic community about the usefulness and 

applicability of formative measures (e.g., 

Howell et al. 2007; Wilcox et al. 2008; Bagozzi 

2007; Diamantopoulos et al. 2008). For 

instance, Howell et al. (2007) have argued that 

formative measurement has very little 

usefulness and it is not an attractive alternative 

to the reflective measurement approach. Several 

other authors (e.g., Bollen 2007; 

Diamantopoulos et al. 2008) have suggested that 

formative measures are important but are 

underestimated by the management community. 

In the words of Diamantopoulos et al. (2008; p. 

1216), “further theoretical and methodological 

research is necessary to finally settle this debate. 

Time will tell”.   

The requirements of the sample size in the 

SEM study differ in two streams. In general, the 

CBSEM study is more sensitive to sample size 

than the VBSEM study. The literature suggests 

that some statistical algorithms applied by 

CBSEM cannot produce trustworthy results 

(Hair et al. 2010) or that the researcher will 

have estimation problems with small samples. 

The VBSEM approach is more robust and less 

sensitive to sample size. Several simulations 

suggest that the study can be conducted with a 

sample of 20 observations and many latent 

constructs (e.g., Wold 1989; Chin & Newsted 

1999). However, small sample size and “soft” 

distributional prerequisites should not be 

employed as a “silver bullet” by default; i.e., 

without any sound reasons for theoretical and 

empirical justification.    

The evaluation of fit and model selection are 

based on a great number of, and sometimes 

controversial, issues and criteria (e.g., Bentler 

1990; Bentler & Bonett 1980; Bollen 1989a, 

1989b; Fornell & Larcker 1981; Hair et al 2010; 

Hu & Bentler 1999; Jöreskog 1973; Marsh & 

Hau 1996; Tucker & Lewis 1973). We 

synthesized and presented the minimum 

consensus that exists in SEM literature. This 

consensus represents different groups of 

measures and important conceptual differences 

between VBSEM and CBSEM approaches. The 

evaluation of the goodness-of-fit in the VBSEM 

approach includes assessment of the model 

predictability and the stability of estimates. A 

model evaluation in CBSEM includes 

assessment of different measures such as 

measures of absolute fit, incremental fit and 

model parsimony.  

The procedures and steps explained in the 

paper are standard outputs in most of the 

software available on the market (SPSS, 

LISREL, AMOS, SmartPLS, G*Power 3.1., 

etc.). When necessary, the authors of the present 

paper referred to the articles that discuss this 

specific topic in more detail. 
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4.1. Some remaining open questions 

 

An important research step is the problem of 

reliability. We have presented evidence against 

the usage of Cronbach’s alpha in management 

studies, because alpha is not an appropriate 

reliability indicator, and λ4 and GLB are more 

appropriate (e.g., Guttman 1945; Jackson & 

Agunwamba 1977; Ten Berge & Sočan 2004; 

Sijtsma 2009). The literature is silent about the 

behavior of the λ4 and GLB in different 

measurement specification contexts. We know 

that a researcher can apply these reliability 

indicators in the type A mode, but we do not 

know whether we can also apply them in modes 

B and C. We also do not know if they are 

applicable only in the CBSEM set-up, or 

whether (and how) we can use them in the 

VBSEM set-up. From Werts et al. (1974) we 

know that the composite reliability ρc is a better 

indicator of reliability than Cronbach’s α in the 

VBSEM approach. We do not know what the 

theoretical and practical interrelationships are, if 

any, among ρc, Guttman’s λ and GLB in the 

VBSEM environment. Further software and 

theoretical development is needed. 

An important issue is further scale 

modification, after the management scale has 

shown dimensionality and construct validity. 

Finn and Kayande (2004) have pointed out that 

effects of modified scale on scale performance 

is under-investigated in the literature, because 

scale adopted to a particular management 

context as well as scale refinement are not 

covered by classical reliability theory.  

Researchers have tried to determine the 

minimum sample size needed for a study that 

employs the SEM approach, not only in 

management but also in other academic fields 

(e.g., Bentler & Chou 1987; Baumgartner & 

Homburg 1996; Chin 1998b; cf. Marcoulides & 

Saunders 2006). For instance, we are not 

familiar with any research that questioned or 

extended Chin’s “10” rule for a minimum 

sample size in the VBSEM environment (cf. 

Marcoulides & Saunders 2006). The ongoing 

academic debate on how to corroborate the 

adequate sample size in both streams needs 

further theoretical enhancement and simulation 

studies, especially for a heterogeneous 

discipline such as management.    

The conventional use of SEM employs linear 

models on cross-sectional data. There are two 

beneficial research avenues not employed in 

management. The first is the use of nonlinear 

models, such as quadratic effects of exogenous 

variables (cf. Steenkamp & Baumgartner 2000) 

and Bayesian methods (e.g., Lee 2007; Lee & 

Song 2008). On the one hand, this application 

can open many new research opportunities for 

researchers, but on the other we must be aware 

of the limited use of this approach because 

variables that employ cross-sectional data are 

usually linear. The second beneficial avenue 

could be the employment of longitudinal data 

and time-series research. The SEM modeling of 

time-series data is known in the literature as 

latent curve or latent growth modeling. 

 

4.2. Limitations of study 

 

This is a conceptual manuscript and a clear 

limitation is an absence of contributions and 

discussions based on empirical data. Empirical 

simulation, such as the Monte Carlo study, and 

an analysis of management data should be a 

logical continuation of this topic, but these 

enterprises are beyond the scope of this paper 

(cf. Tomarken & Waller 2005; Yadav 2010). 

The complex CBSEM model that employs 

many latent constructs and indices, in three or 
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more layers, is based on a high-dimensional 

integration of a parameter that cannot be 

efficiently estimated by standard maximum 

likelihood methods. The solution might be an 

application of Bayesian methods that are based 

on Markov Chain Monte Carlo (MCMC) 

estimation procedure (cf. Lee 2007). 

Management literature is scarce on empirical 

simulations and/or studies that analyze and 

compare conceptual foundations of covariance- 

and variance-based SEM. One of the few 

studies that do exist was conducted by Fornell 

and Bookstein (1982) almost 30 years ago, but 

was limited by their research scope, which 

focused only on differences in the measurement 

model specification. Tenenhaus (2008) made a 

simulation on the ESCI model, using customer 

satisfaction data, in which he compared CBSEM 

(“classical”, PCA and ULS-SEM) and VBSEM 

(PLS and GSCA) approaches. He concluded 

that all approaches yielded practically the same 

results if the model specification was conducted 

correctly and the researcher used “good” data. 

This implies that model estimation is not 

dependent upon the method used, but on the 

underlying theoretical background, adequate 

sampling (cf. Churchill & Peter 1984) and the 

correct model specification. Only a few studies 

in management literature analyze the 

measurement model specification, using Monte 

Carlo simulations, but exclusively in the 

CBSEM context (e.g., Diamantopoulos & 

Winklhofer 2001; Jarvis et al. 2003; etc.), and 

they are silent about the VBSEM approach. We 

are aware of the marketing application of SEM 

in experimental designs by Bagozzi (1994) and 

Bagozzi and Yi (1989) that are applied in the 

CBSEM and VBSEM streams, but their 

findings and conceptualizations were not widely 

disseminated in the management community. 

The second limitation is that we did not 

discuss the common method bias. This is an 

important issue in research practice but beyond 

the aim of this paper. However, researchers 

must be aware that most of the academic 

findings which are disseminated in the 

management community are based on self-

reported research studies (Podsakoff & Organ 

1986). Problems with self-reporting arise 

because the subject is asked to express specific 

opinions and attitudes that can be questioned 

and changeable over time and in different 

environments. Research measures might be 

contaminated, causing measurement errors in 

informant reports, because all measures come 

from the same respondent, with the presumption 

that the source answers in the same fashion and 

via the same way of thinking (Podsakoff and 

Organ 1986; cf. Bagozzi et al. 1991; Bagozzi 

1983; Bollen 1989b). The researcher can apply 

two primary procedures to control common 

method biases: (i) the design of the study; 

and/or (ii) statistical tests (Podsakoff et al. 

2003). Common method bias is traditionally 

tackled by Harman’s one-factor test (Harman 

1967) in order to control common method 

variance. All variables are entered into a factor 

analysis in this procedure. The unrotated factor 

solution results are examined in order to 

determine the number of factors that account for 

the variance in examined variables (Podsakoff 

& Organ 1986), applying the commonly 

accepted threshold for the eigenvalue above 

value 1. The correlated uniqueness model has 

been suggested as an appropriate approach to 

tackle the estimation problems within the 

MTMM model (Podsakoff et al. 2003), because 

this model allows the error terms to be 

correlated in order to account for the 

measurement effects by the same method 

(Podsakoff et al. 2003). The common method 

bias techniques are based on the classical test 

theory, which means that indicators are formed 

in the type A mode, i.e., as the reflective-

indicator constructs. This implies two problems 

that are not addressed in the literature. First, 

how the common method bias remedies are 
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applied within formative and mixed models. 

The difference between the formative and 

reflective constructs is an important issue 

because of the source of common method bias. 

The error term in the reflective mode is 

identified at the indicator level, but in the 

formative mode the error resides at the construct 

level. Formative constructs in the CBSEM 

approach are identified if there are at least two 

additional reflective paths that emanate from the 

construct (MacCallum & Browne 1993; 

Podsakoff et al. 2003; Edwards 2001). Second, 

the current body of knowledge assumes that 

common method biases are applied in the 

CBSEM environment. The literature is also 

silent about the matter of what the common 

method remedies will be if the researcher 

applies the VBSEM approach. 

In our view, it is important that future 

theoretical enhancements and simulation studies 

in management address these issues in detail.  
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