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Abstract

We address intertemporal utility maximization under a general discount function

that nests the exponential discounting and the quasi-hyperbolic discounting cases as

particular specifications. The suggested framework intends to capture one important

anomaly typically found when addressing the way agents discount the future, namely

the evidence pointing to the prevalence of decreasing impatience. The referred anom-

aly can be perceived as a bias relatively to what would be a benchmark exponential

discounting setting, and is modeled as such. The general discounting framework is used

to address a standard optimal growth model in discrete time. Transitional dynamics

and stability properties of the corresponding dynamic setup are studied. An extension

of the standard growth model to the case of habit persistence is also considered.
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Exponential Discounting Bias

1 Introduction

Typically, the benchmark utility maximization dynamic model takes a constant rate of time

discounting and, thus, intertemporal discounting is modeled as being exponential. This is

an analytically convenient assumption and it is logically consistent with the idea that a

constant interest rate is often used to compare the value of money over time, for instance

at the level of the evaluation of investment projects. However, there are psychological

effects that must be taken into account when addressing intertemporal preferences. Such

effects may have a huge impact on how we perceive the behavior of the representative agent

in the context of conventional economic models since they tend to generate a departure

relatively to exponential discounting.

In Xia (2011) three types of time preference anomalies that imply a deviation relatively

to the standard exponential discounting framework are identified. These relate to the

timing of the evaluation, the magnitude of the reward, and the sign of the reward. The

sign effect was first highlighted by Kahneman and Tversky (1979) and basically states that

gains are discounted more than losses. The magnitude effect is a matter that has received

increasing attention on recent literature (see Noor, 2011 and Bialaszek and Ostaszewski,

2012) and relates to the evidence that there is an inverse relation between the amount of

the reward and the steepness of discounting over time, i.e., agents tend to be more patient

when larger rewards are under evaluation.

The most debated issue, though, is the one concerning changes on the degree of im-

patience as time elapses. This point relates essentially to the basic evidence that there is

decreasing impatience over time —human beings tend to place much more weight on the

difference between a reward to be received (or a cost to be incurred) today or tomorrow

than on the difference between two consecutive dates in the far future. Thus, the rate of

discount that we apply when measuring the present value of some near in time outcome

is typically much larger than the discount rate applied to a distant in the future event.

This is also the same as saying that the discount rate decreases in time. Such type of phe-

nomenon is known as hyperbolic discounting and it has been widely discussed at various

levels in recent years.

The discussion on the subject, from an economic point of view, has started with Strotz

(1956) and Pollak (1968) and received influential contributions in the 1990s, with the work,

among others, of Akerlof (1991), Laibson (1997, 1998) and O’Donoghue and Rabin (1999).

These authors have raised some fundamental questions: Does the popularity of exponential

discounting come from its time consistency or from analytical tractability? How can

one incorporate into economic models an operational notion of decreasing impatience? If

preferences are truly present-biased, how does this relate to important behavioral issues as

self-control or procrastination? Are agents aware of their own intertemporal preferences,

so that they adopt sophisticated plans of action or does unawareness lead to a naive

interpretation about the future?

These interrogations continue today to be a rich source of debate on behavioral eco-
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nomics and related fields. Part of the debate is still centered on justifying why hyperbolic

discounting should be considered a rational way to form intertemporal preferences, more

than exponential discounting. Prelec (2004), Dimitri (2005), Drouhin (2009), Farmer and

Geanakoplos (2009), and Gollier (2010) argue that hyperbolic discounting is time consis-

tent and rational. Decreasing impatience in a stochastic environment allows for a formal

proof of such claim. Other authors are more skeptical about how hyperbolic discounting

is being approached in the literature. While there is a tendency to search for analytical

discount functions that may allow for an elegant treatment of economic models, one should

take into account arguments as the ones by Rubinstein (2003) and Rasmussen (2008) who

believe that modifying functional forms does not answer the main questions posed by

the apparent lack of rationality in economic behavior. As stated by Ariel Rubinstein, a

deeper understanding of intertemporal human decisions requires opening the black-box of

decision making more than changing slightly the structure of the model used to address

human behavior.

Other relevant contributions on the field of hyperbolic discounting relate the generaliza-

tion of the concept and the exploitation of the corresponding implications. In Bleichrodt,

Rohde, and Wakker (2009) the commonly used discount functions are modified in order

to account for other kinds of time inconsistency on the formation of preferences besides

decreasing impatience. Specifically, the proposed framework accommodates the possibil-

ities of increasing impatience and strongly decreasing impatience. Also Benhabib, Bisin,

and Schotter (2010) present a general version of the discount function, that contemplates

the most common specifications of exponential and hyperbolic discounting found in the

literature.

The powerful notion of hyperbolic discounting, and its most common specification in

economics - Laibson’s quasi-hyperbolic discounting concept - have been applied to study a

wide range of relevant economic issues. Just to cite a few, we highlight the contributions

of Gong, Smith, and Zou (2007), concerning consumption under uncertainty, Groom et

al. (2005), Dasgupta (2008), Gollier and Weitzman (2010), and Hepburn, Duncan, and

Papachristodoulou (2010) in the field of environment policy, namely when making the

distinction between social and private discount rates, a paramount normative question in

this field, Graham and Snower (2007) on short-run macroeconomics and inflation dynam-

ics, and, Barro (1999) and Coury and Dave (2010) on the implications of non-exponential

discounting to economic growth.

In this paper we generalize the quasi-hyperbolic discounting setting and apply the

new framework of intertemporal preferences to a standard discrete time optimal growth

problem. The setup differs from other approaches on the subject because we relate the

shape of the discount function to issues of financial literacy, following the analysis on the

exponential growth bias as developed by Stango and Zinman (2009) and Almenberg and

Gerdes (2011). Our argument is that in the same way people tend to underestimate future

values of variables that grow at constant rates, individuals also tend to overestimate close

in time values (relatively to the ones more distant in the future) when discounting them to
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the present. This reasoning allows us to present a discount function that is flexible enough

to characterize different degrees of hyperbolic discounting and to nest the exponential

discounting case as a possible limit outcome.

The proposed specification of intertemporal preferences is analytically convenient to

address a discrete time optimal growth model. It enables us to derive explicit stability

conditions and it serves to compare different degrees of deviation from the constant dis-

count rate benchmark. Additionally, we extend the model to include habit persistence in

consumption in order to demonstrate the flexibility of the exponential discounting bias

concept when used in different settings.

The remainder of the paper is organized as follows. Section 2 discusses in detail the

notion of exponential discounting bias relating it with financial literacy issues. In section 3

this concept is applied to compare different possibilities in terms of hyperbolic discounting.

Section 4 approaches utility maximization under the general specification for intertemporal

preferences. Section 5 sets up the growth model and analyzes the underlying dynamics.

In section 6, an extension is explored; namely, the model is adapted in order to account

for habit persistence. Finally, section 7 concludes.

2 Anomalies in Financial Evaluation

Recently, Stango and Zinman (2009) and Almenberg and Gerdes (2011) have carefully

analyzed the evidence that points to a tendency to underestimate the future value of a

given variable that grows at a constant rate. This exponential growth bias clearly exists

in practice, for instance in what concerns household financial decision making.

The mentioned literature emphasizes the link between the extent of the bias and the

degree of financial literacy. A poor ability to perform basic calculations and the lack

of familiarity with elementary financial concepts and products will, in principle, imply

a wider gap between individuals’calculations and the true future values, i.e., there is a

negative correlation between financial literacy and the exponential growth bias.

Well informed agents will be able to understand the basic notion of capitalization

and to perceive the exponential path followed by any value that accumulates over time.

However, many studies have been discovering serious flaws on the understanding, by the

average citizen, of simple financial concepts and mechanisms. This was highlighted by

Lusardi (2008) and Japelli (2010), among others. Financial literacy or, more precisely,

the lack of it, can explain the kind of deficiency that consists in linearizing an exponential

series in time.

The important argument concerning the lack of ability on accurately addressing the

value of money in time is that incorrect answers are biased. As emphasized by Almenberg

and Gerdes (2011), individuals are almost twice as likely to underestimate the correct

amount than to overestimate it. Thus, on the aggregate it makes sense to state that in a

society where a given degree of financial illiteracy exists, the future values of a series that

grows at a constant rate will be underestimated. Exponential growth bias will then be
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common when assessing the future value of an investment that offers a return at a given

annual constant interest rate.

It is reasonable to conceive the existence of a link between the interest rate and the rate

of time preference. In Farmer and Geanakoplos (2009, pages 1,2), this link is explained in

simple terms,

’A natural justification for exponential discounting comes from financial economics

and the opportunity cost of foregoing an investment. A dollar at time s can be placed in

the bank to collect interest at rate r, and if the interest rate is constant, it will generate

exp(r(t− s)) dollars at time t. A dollar at time t is therefore equivalent to exp(−r(t− s))
dollars at time s. Letting τ = t − s, this motivates the exponential discount function

Ds(τ) = D(τ) = exp(−rτ), independent of s.’

The above sentence establishes a possible direct connection between the interest rate

and the discount rate of intertemporal preferences. Nevertheless, there is a substantial

difference between the two. While the interest rate is obtained as a market outcome,

and might not vary if market conditions do not change, the rate of intertemporal choice

is a matter of perception and preferences. Agents may want to adopt a rate of time

preference that is close to the interest rate, but if they fail in understanding how future

values accumulate, the lack of financial literacy eventually helps in explaining why the

subjective rate of time impatience possibly departs from a constant value or, in other

words, why discounting possibly deviates from the benchmark exponential case under a

constant discount rate.

To understand how financial illiteracy might contribute to deviate agents’preferences

from exponential discounting, we just need to make the inverse path to the one that is

present in the evaluation of the exponential growth bias, i.e., if individuals tend to under-

estimate future values when assessing them in the present, they will certainly overestimate

current values when thinking about them as if they were taking decisions at some future

time moment. In analytical terms, the idea of exponential growth bias is commonly pre-

sented as FV = PV (1 + r)(1−θ)t, where FV is the future value, PV the present value, r

the interest rate, t is time and θ ∈ (0, 1) measures the magnitude of the bias. If one wants

to address the present value given the future value, we just need to rearrange the previous

expression and write it as PV = FV/(1 + r)(1−θ)t.

The above relation implies decreasing impatience. Far in the future outcomes are much

less valued than the ones occurring in the near future. Now the bias works on the opposite

direction - near in time results are overestimated. We can call this effect exponential
discounting bias, and we may define it as the tendency to overestimate close in time
values of a variable that grows at a constant rate.

The exponential discounting bias will be bigger the larger is the extent of financial

illiteracy and it constitutes an alternative explanation about why preferences in time tend

to imply hyperbolic discounting: agents want to select a constant rate of time preference,

namely a rate of time preference that follows the interest rate path, but their ability to
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undertake the proper computations is biased, in such a way that far in time values are less

considered than the ones near the current period.

Taking into consideration the notion of exponential discounting bias can be an ana-

lytically convenient way of approaching departures from strict exponential discounting.

According to the distinction introduced by O’Donoghue and Rabin (1999) between naive

and sophisticated agents, the discussed bias puts us closer to the naive evaluation of

intertemporal preferences in Akerlof (1991) than to the sophisticated behavior that is im-

plicit in Laibson’s (1997, 1998) analysis. In this context, a sophisticated person will know

exactly what the respective future selves’preferences will be, while naive individuals are

not able to realize that as time evolves, preferences will evolve as well.

As a result of the understanding that a bias on discounting cannot be perceived by the

agent, since it is the outcome of an anomaly on an otherwise intended constant discounting

behavior, the representative agent in the models of the following sections will display

a clearly naive behavior. Therefore, she will not be concerned with the possibility of

tomorrow selves choosing options that are different from the ones chosen today. Since

people are not aware of their own time inconsistency, it is legitimate to consider a dynamic

optimal control problem where the representative agent maximizes at a given date t = 0

her future utility, and thus to design an optimal plan where the present bias exists but

the agent acts as if it did not exist.

In short, the analysis in this paper finds support on two logical arguments:

First - Individuals desire to turn intertemporal preferences compatible with the oppor-

tunity cost of money. This is the benchmark time consistent behavior that the rational

agent would like to adopt;

Second - Lack of a solid financial literacy eventually introduces a biased evaluation

of intertemporal preferences, that makes the representative agent to act as if she was an

exponential discounter, when in fact she is not.

3 Departures from Exponential Discounting

In order to account for decreasing impatience, Loewenstein and Prelec (1992) have pro-

posed the following hyperbolic discount function: DH(t) = (1 + αt)−γ/α, where α and γ

are two positive parameters. This discount function implies a decreasing discount rate:

short-term discount rates are higher than long-term discount rates. Empirical evidence

suggests that this is a much more appropriate and realistic way to approach intertemporal

preferences then just considering a constant discount rate over time.

While empirically more suitable, hyperbolic discounting, considered as modeled above,

is much less tractable from an analytical point of view than exponential discounting. Be-

cause of this, Laibson (1997, 1998), based on a previous formalization by Phelps and

Pollak (1968), has proposed an approximation to hyperbolic discounting, that he dubbed

quasi-hyperbolic discounting; this is straightforward to apply to the standard dynamic

optimization models of economists. The discount function takes the following form:
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DQH(t) =

{
1 if t = s

β̂δ̂
t−s

if t = s+ 1, s+ 2, ...
, with s the time period in which the future

is being evaluated; β̂ ∈ (0, 1), δ̂ ∈ (0, 1). Note that in the limit case β̂ = 1 we are back at

exponential discounting.

As in the hyperbolic case, the quasi-hyperbolic discount function captures the idea

that discount rates decline with the passage of time. Laibson proposes, in his studies, a

small exercise to compare discount rates on each of the settings. He considers exponential

discounting (β̂ = 1; δ̂ = 0.97), quasi-hyperbolic discounting (β̂ = 0.6; δ̂ = 0.99), and

hyperbolic discounting (α = 105; γ = 5 × 103) and draws a graph where it is evident

that DQH(t) generates a time trajectory that is considerably closer to DH(t) than the one

originating in plain exponential discounting.

In the previous section, it was stated that the absence of a stable impatience level over

time may be interpreted as an anomaly, something similar to the tendency that individuals

have to linearize a series of values that accumulate at a constant rate (and, hence, truly

exhibit an exponential path). In the proposed setting, this anomaly should be considered

in the reverse way, i.e., if individuals tend to linearize exponential trajectories for the

future, when discounting values to the present they will exacerbate the exponential nature

of the series under analysis.

In this context, we will consider exponential discounting, DE(t) = βt−s, β ∈ (0, 1), but

we add the possibility of an error of evaluation that increases short-run impatience, gen-

erating a kind of hyperbolic discounting. Let θ(t) be the anomaly term, which transforms

DE(t) into a discount function with an exponential bias, i.e., DEB(t) = β(1+θ(t))(t−s).

Function θ(t) will take the following form: θ(t) =

{
0 if t = s

θ1
t−s − θ0 if t = s+ 1, s+ 2, ...

.

The assumption of DEB(t) as the discount function has two advantages. On one hand,

it allows for an intuitive explanation on why we depart from exponential discounting.

There is an error of evaluation by the agents; perhaps they want to adopt a constant

discount rate but, relatively to the periods that are closer in time they do not have the

capacity to make an objective evaluation of their priorities. As time goes by, such ability

evolves and, in the long-run, the error in evaluation is much smaller. On the other hand, we

introduce a more general and flexible approach to time discounting than the one underlying

DQH(t); as we will see below, the values of β, θ0, and θ1 can be chosen in such a way that

we obtain an approximation to DH(t) that is undoubtedly better than the one provided

by quasi-hyperbolic discounting.

We consider θ0 ∈ [0, 1] and θ1 ≥ 0. Naturally, exponential discounting holds for

θ0 = θ1 = 0, while quasi-hyperbolic discounting is also a particular case of the more

general setting provided by DEB(t) for β̂ = βθ1 and δ̂ = β(1−θ0). Recover Laibson’s

example and consider the following parameter values for the exponential bias discount

function: β = 0.97, θ0 = 0.95, and θ1 = 23. Figure 1 displays a graph that is similar to

the one in the original Laibson’s analysis (50 periods are considered and hyperbolic and

quasi-hyperbolic discount functions are displayed; pure exponential discounting is ignored
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in the displayed figure). To this figure, we add the exponential bias case for the parameter

values that were chosen.

It is evident that the new function generates results that offer a much better fit with

the hyperbolic discount function than the ones generated by the quasi-hyperbolic case.

After 15 periods there is almost a perfect match between DEB(t) and DH(t) (although,

if we introduced additional periods - after 50 - we would start to see a departure of one

of the series relatively to the other; nevertheless, this widening gap would never be as

pronounced as the one regarding quasi-hyperbolic discounting).

Figure 2 allows for a closer look on this issue. The figure represents the distance (in

percentage and in absolute value) between DEB(t) and DH(t) and between DQH(t) and

DH(t). Only in three of the 50 time periods (t = 1, t = 2 and t = 22), the distance between

DEB(t) and DH(t) exceeds the distance between DQH(t) and DH(t). It is notorious that

the present proposal is well suited to address decreasing impatience and it is also well

founded on the idea that agents lack the information, literacy, or ability to maintain a

constant discount rate over time.

*** Fig. 1, 2 ***

4 Exponential Discounting Bias in Intertemporal Utility Func-

tions

In many economic settings, discount functions are used to construct intertemporal utility

functions. Their typical presentation is as follows,

Us(c) = u(cs) +
∞∑
τ=1

D(t)u(cs+τ ) (1)

Equation (1) represents the utility in the current period, t = s, from consuming today

and in all future moments from t = s+ 1 to an undefined future date. The term u(cs) is

current consumption utility; the instantaneous utility function obeys conventional prop-

erties of continuity, smoothness, and concavity. Future utility is taken into account for

all possible time moments but discounting implies that a larger weight is put on closer in

time consumption opportunities. The discount function that we will consider is the one

involving the exponential bias, D(t) = DEB(t).

We can take the same sequence of utility functions, but now initiating one period later.

This becomes,

Us+1(c) = u(cs+1) +

∞∑
τ=1

D(t)u(cs+1+τ ) (2)

Taking into account Us(c) and Us+1(c) as presented above, we can address intertem-

poral utility under a recursive form. The following expression is straightforward to obtain
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from the simultaneous consideration of (1) and (2), under exponential discounting bias.

Now we denote time by t instead of s, in order to reflect that the important issue is that

we are considering two consecutive time periods, independently of which the first in fact

is:

Ut(c) = u(ct) + β1−θ0
[
Ut+1(c)− (1− βθ1)u(ct+1)

]
(3)

The above expression is analytically useful, because one can apply to it, directly,

dynamic programming techniques, in order to obtain optimal solutions.1 Consider a simple

budget constraint according to which a representative agent accumulates financial wealth

(at) at a constant rate (r), besides receiving a constant labor income w. This constraint

is

at+1 = w + (1 + r)at − ct, a0 given. (4)

The problem the representative agent will want to solve consists in maximizing utility

subject to (4). It is crucial to remark, at this stage, that the intertemporal problem is

solved under the implied assumption that the representative agent is naive. As discussed in

section 2, we are not concerned with the tendency to procrastinate that an individual with

decreasing impatience might display, because she will never realize that her intertemporal

preferences are, in fact, not constant over time.

However, one must also highlight that the inability to understand how the future is

effectively being discounted does not constitute an obstacle to the adoption of an optimal

behavior; the agent solves an optimality problem and chooses the consumption path that

best serves her purpose, which is the maximization of intertemporal utility. Putting it

in other words, besides the budget constraint, the agent also faces a literacy constraint

that affects the evaluation of time discounting; given these two constraints, the agent acts

rationally by solving the dynamic optimization problem she faces. Financial illiteracy is

not an impediment to the adoption of an optimizing behavior, although it can change the

outcome of the problem at hand.

Solving the maximization problem requires defining a function V (at) such that

V (at) = max
c

{
u(ct) + β1−θ0

[
V (at+1)− (1− βθ1)u(ct+1)

]}
(5)

The corresponding first order conditions are

u′(ct) + β1−θ0 [V (at+1)]
′ ∂V (at+1)

∂ct
− β1−θ0(1− βθ1)u′(ct+1) = 0

⇒ β1−θ0 [V (at+1)]
′ = u′(ct)− β1−θ0(1− βθ1)u′(ct+1) (6)

1The dynamic programming procedure used to solve the model was adapted from Walde (2011), and it
is standard in terms of the analysis of deterministic discrete time optimization models.
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and

[V (at)]
′ = β1−θ0 [V (at+1)]

′ ∂V (at+1)

∂at

⇒ [V (at)]
′ = (1 + r)β1−θ0 [V (at+1)]

′ (7)

We must also take into account the transversality condition

lim
t→∞

atDEB(t)V (at) = 0

Combining the two optimality conditions, (6) and (7), one obtains an equation of mo-

tion for consumption. In order to simplify the analysis, take a logarithmic utility function,

u(c) = ln c. For this functional form, the following difference equation is computed,

ct+1 =
β1−θ0(1− βθ1)(1 + r)ctct−1

(2− βθ1 + r)ct−1 − 1
β1−θ0

ct
(8)

Expression (8) might be rewritten considering as endogenous variable the ratio ψt :=

ct/ct−1,

ψt+1 =
β1−θ0(1− βθ1)(1 + r)

(2− βθ1 + r)− 1
β1−θ0

ψt
(9)

From equation (9), we can determine the steady-state value of the ratio between two

consecutive values of consumption.

Proposition 1 The typical intertemporal optimization problem of the representative agent
under exponential discounting bias has two equilibrium points: ψ∗ = β1−θ0(1 + r) ∨ ψ∗ =

β1−θ0(1− βθ1).

Proof. Solve (9), for ψ∗ := ψt+1 = ψt

The found values have direct correspondence in the exponential case with the solutions

ψ∗ = β(1 + r) ∨ ψ∗ = 0. Observe that the steady-state values are as much larger as the

wider is the discounting bias, meaning that the deviation from exponential discounting

promotes a faster steady-state growth of consumption. This is the obvious result of taking

a discount function with a corresponding steady-state value, β1−θ0 , that is a value higher

than the benchmark constant discount factor β.

Note that the two solutions have a different nature: the first one is unstable and the

second one is stable,
dψt+1
dψt

∣∣∣
ψ∗=β1−θ0 (1+r)

= 1+r
1−βθ1 > 1;

dψt+1
dψt

∣∣∣
ψ∗=β1−θ0 (1−βθ1 )

= 1−βθ1
1+r ∈ (0, 1).

This is precisely a same stability outcome as the one achieved under exponential dis-

counting. Since consumption is a control variable, the representative agent has the possibil-

ity of selecting the unstable solution as the long-run path of consumption (it is the solution
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that allows for positive growth, namely if the rate of discount is lower than the interest

rate). Therefore, the long-run growth rate of consumption is ψ∗ − 1 = β1−θ0(1 + r) − 1;

the larger the value of θ0, the more consumption will grow in the steady-state.

5 Exponential Discounting Bias in the Neoclassical Growth

Model

5.1 The Setup

We now characterize the dynamics of a neoclassical growth model under exponential dis-

counting bias. The maximization problem is the same as in the previous section (and

the same remarks on naive intertemporal preferences and on the ability to optimize even

under eventual financial literacy flaws continue to be valid). However, the constraint on

the problem differs. We take capital accumulation and a production function involving

decreasing marginal returns. Let kt represent the capital stock and assume the following

parameters: A > 0 (technology index), δ ∈ (0, 1) (depreciation rate), η ∈ (0, 1) (output-

capital elasticity). The resource constraint takes the form

kt+1 = Akηt − ct + (1− δ)kt, k0 given (10)

Again, we compute first order conditions to encounter an optimal dynamic relation for

consumption. If η = 1 (endogenous growth model with an AK production function), we

end up with exactly the same dynamics as in the previous section (with r = A−δ). Under
decreasing marginal returns, we will be able to find constant steady-state values for both

the state and the control variable, i.e., kt and ct. Repeating the same procedure of calculus

to find optimality conditions, we arrive to the difference equation for consumption

ct+1 =
β1−θ0(1− βθ1)

[
1 + ηAk

−(1−η)
t − δ

]
ctct−1[

2− βθ1 + ηAk
−(1−η)
t − δ

]
ct−1 − 1

β1−θ0
ct

(11)

Because one cannot address consumption dynamics independently of capital accumu-

lation on the present setting, we end up with a system of three difference equations to be

analyzed; the system is,
kt+1 = Akηt − ct + (1− δ)kt

ct+1 =
β1−θ0 (1−βθ1 )

[
1+ηAk

−(1−η)
t −δ

]
ctzt[

2−βθ1+ηAk−(1−η)t −δ
]
zt− 1

β1−θ0
ct

zt+1 = ct

(12)

Next, we proceed to the full characterization of the dynamics of system (12). This

requires finding the steady-state and looking at local dynamics.

Proposition 2 The steady-state of the neoclassical optimal growth problem under expo-

11



Exponential Discounting Bias

nential discounting bias corresponds to a unique equilibrium point:

(k∗; c∗) =

([
ηA

1/β1−θ0 − (1− δ)

]1/(1−η)
;A (k∗)η − δk∗

)

Proof. The steady-state is defined as the pair of values (k∗; c∗) such that kt+1 = kt

and ct+1 = ct = ct−1. Applying these conditions to system (12), it is straightforward to

determine the values in the proposition.

The steady-state value of the capital stock increases with the output-capital elasticity

and with the value of the technology index. It falls with a larger depreciation rate. It is also

straightforward to observe that a higher θ0 (stronger deviation relatively to exponential

discounting) implies a larger long-run value for the capital stock; the same is true for the

value of β. As for parameter θ1, this has no influence over the steady-state values of the

endogenous variables.

We illustrate the results with a small numerical example. Let η = 1/3, A = 1 and

δ = 0.05. The steady-state for capital and consumption is explored for values of θ0 in the

range 0−1 and values of β in the range 0.75−1. Figure 3 shows how the amounts of capital

and consumption vary with different values of the parameters that define intertemporal

impatience. The higher is θ0, the larger are the equilibrium values of the two variables; the

same occurs for a higher β. The horizontal axis respects to β, the depth axis represents

different values of θ0 and the vertical axis gives the values of each of the variables for the

selected parameter values.

*** Fig. 3 ***

Although discounting is important in terms of the dynamics of the growth model, we

conclude that it has a limited impact on the steady-state: parameter θ1 does not have

any influence in long-run equilibrium, while a change on θ0 disturbes the steady-state

slightly by making the discount factor value to change in the same direction. A larger

discount factor is synonymous of increased patience, which benefits the economy in terms

of long-run accumulated capital and consumption levels.

5.2 Local Dynamics

In order to address stability properties, one needs to linearize the system in the vicinity

of the steady-state point. Computation leads to

 kt+1 − k∗

ct+1 − c∗

zt+1 − c∗

 =


1/β1−θ0 −1 0

j 1 + 1
β1−θ0 (1−βθ1 ) −

1
β1−θ0 (1−βθ1 )

0 1 0

 .
 kt − k∗

ct − c∗

zt − c∗

 (13)

12
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with j = 1
β1−θ0

[
1

β1−θ0 (1−βθ1 ) − 1
]
1−η
η

[
1− (1− δ)β1−θ0

] [
1− (1− (1− η)δ)β1−θ0

]
> 0.

Proposition 3 The system is saddle-path stable. There exists one stable dimension, in

the three dimensional space of the model.

Proof. The existence of one stable dimension implies that one of the eigenvalues of
the Jacobian matrix locates inside the unit circle, while the other two fall outside the unit

circle. Let the eigenvalues be λ1, λ2, λ3. We want to prove that |λ1| < 1, |λ2| > 1 and

|λ3| > 1.

We start by presenting trace, Tr, determinant, Det, and sum of principal minors, ΣM ,

of the Jacobian matrix; these are:

Tr = λ1 + λ2 + λ3 = 1/β1−θ0 + 1 + 1
β1−θ0 (1−βθ1 ) ;

Det = λ1λ2λ3 = 1

(β1−θ0)
2
(1−βθ1 )

ΣM = λ1λ2 + λ1λ3 + λ2λ3 = Tr +Det+ j − 1

It is straightforward to observe that Tr > 3, Det > 1 and ΣM > 3. The constraint on

the determinant implies that the eingenvalues are all positive or that λ1 > 0, λ2, λ3 < 0.

In this second scenario, the conditions involving the trace and the sum of principal minors

imply λ1 > 3 − (λ2 + λ3) and λ1 < 3−λ2λ3
λ2+λ3

; these inequalities cannot be simultaneously

satisfied for the constraints on the values of the eigenvalues. Thus, the only feasible

possibility is the one under which the eigenvalues are all positive: λ1, λ2, λ3 > 0. If

all the eigenvalues are larger than zero, then the constraints involving the trace and the

determinant allow to perceive that full stability (all eigenvalues below one) is not a possible

outcome. At least one eigenvalue must be larger than 1.

Next, we resort to Brooks (2004) to identify how many eigenvalues effectively fall inside

the unit circle. According to the mentioned author, an evaluation of the characteristic

polynomial allows to state that: if condition

−(1 + ΣM) < Tr +Det < 1 + ΣM

is met, there exists one real eigenvalue λ1 of magnitude less than 1 and either:

- a pair of complex conjugate eigenvalues λ2, λ3 = a± ib, with |a± ib| < 1;

- two more real eigenvalues of magnitude less than 1; or

- a pair of real eigenvalues of magnitude greater than 1 and having the same sign.

Since we have remarked that at least one of the eigenvalues is larger than 1, the only

possibility that can hold from the three above is the last one. Thus, if the displayed double

inequality is satisfied, we confirm that 0 < λ1 < 1 and λ2, λ3 > 1. It is straightforward to

verify the validity of the condition since it is equivalent to

−(Tr +Det+ j) < Tr +Det < Tr +Det+ j

Therefore, we confirm the existence of a single stable dimension, in the three dimen-

sional space of the assumed system

13
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The above result can be illustrated through a numerical example. Recover the bench-

mark values for the exponential discounting bias case, i.e., β = 0.97, θ0 = 0.95, θ1 = 23.

For these, one computes the eigenvalues of the Jacobian matrix for various possibilities

in terms of the values of η ∈ (0, 1) and δ ∈ (0, 1), namely, we consider η between 1/6

and 5/6 and δ between 0.025 and 0.125. The values that the eigenvalues possess for each

combination of parameters are displayed in Figure 4. The figure involves three panels, one

for each eigenvalue. In the horizontal axis we have the values of δ, in the depth axis the

value of η and in the vertical axis the values assumed by each eigenvalue. Panel a respects

to λ1 and the other two to the eigenvalues that fall outside the unit circle, independently

of the values of the parameters.

*** Fig. 4 ***

With saddle path stability, we have a result that is qualitatively similar to the one of

the original Ramsey model with a constant discount rate. There is convergence towards the

unique steady-state point, along a one-dimensional stable path; this trajectory is followed

because the representative agent has the possibility of adapting its initial consumption

level in order to place the system over the stable path, since consumption is a control

variable. The expression of the stable trajectory can be presented in general terms.

Proposition 4 Consider a point (k0, c0) in the vicinity of the steady-state (k∗; c∗). In

the convergence from the first to the second point, contemporaneous values of consumption

and capital evolve following the stable path

ct − c∗ =
(

1/β1−θ0 − λ1
)

(kt − k∗)

Proof. The saddle-path stable trajectory can be obtained by computing the eigenvec-
tor associated to the eigenvalue inside the unit circle. Thus, we can solve the system

1/β1−θ0 − λ1 −1 0

j 1 + 1
β1−θ0 (1−βθ1 ) − λ1 −

1
β1−θ0 (1−βθ1 )

0 1 −λ1


 p1

p2

p3

 =

 0

0

0


Letting p1 = 1, the eigenvector might be written as

P =

 1

1/β1−θ0 − λ1
1/(λ1β

1−θ0)− 1


The slope of the contemporaneous relation between consumption and capital is given by

the ratio p2/p1, i.e., ct− c∗ = (p2/p1) (kt−k∗), which corresponds to the expression in the
proposition

14
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As in the original Ramsey model, the convergence relation between capital and con-

sumption is of positive sign; thus, values of both variables are likely to simultaneously

increase towards their long-term values. Note that this is a generic stable path expression

that can be applied to specific forms of the discount function, namely the quasi-hyperbolic

case and also the pure exponential discounting case. Observe, as well, that another stable

trajectory emerges from the analysis: one can also relate consumption at t − 1 to the

capital stock at t. This convergence relation is also of positive sign.

Let us return to the numerical example. Take η = 1/3 and δ = 0.05 and recover the

remaining parameter values of the benchmark exponential discounting bias exercise. The

eigenvalue inside the unit circle is, in this case, λ1 = 0.944 14. The stable trajectory is,

then, ct − c∗ = 5. 738 4× 10−2(kt − k∗). For the assumed parameter values, in the conver-
gence towards the steady-state, when the capital stock increases by one unit, consumption

will increase 5. 738 4×10−2 units. This rate of convergence can be compared to the one of

the quasi-hyperbolic discounting setting. Recall that hyperbolic discounting was discussed

for β̂ = 0.6; δ̂ = 0.99, with β̂ = βθ1 and δ̂ = β(1−θ0).

Continue to consider β = 0.97; to be in the conditions of the QHD case, we must

now take θ0 = 0.67004 and θ1 = 16. 771. For these parameter values, the lower than

1 eigenvalue comes λ1 = 0.936 68 and the stable trajectory is now ct − c∗ = 7.342 1 ×
10−2(kt − k∗). In the QHD case, the saddle path is steeper than in the EDB case. If we
take EDB as a closer approximation to pure hyperbolic discounting, one possible error

in using QHD consists in achieving a larger change in consumption as the capital stock

evolves than the one that should, in fact, be obtained.

Next, we consider the constant discount rate case. This is the case for which θ0 and θ1
are zero. As θ1 approaches zero, the eigenvalue lower than 1 approaches 0.917 99. Thus,

the stable trajectory is ct − c∗ = 0.11294(kt − k∗). This case departs even more from the

hyperbolic discounting case and thus the relation between k and c is even more steeper.

The above results point to the conclusion that the further we are from the exponential

discounting case the less consumption will vary, in the convergence towards the steady-

state, as the capital stock evolves. To emphasize this outcome, let us present the slope of

the stable trajectory for different values of θ0 and θ1. Consider, again, η = 1/3, δ = 0.05,

β = 0.97. Figure 5 takes θ1 in the horizontal axis and θ0 in the depth axis, in order to

quantify the slope of the stable arm in the vertical axis. It is evident from the figure that

a larger bias relatively to exponential discounting (measured by higher values of θ0 and

θ1) implies a smaller change in c relatively to k in the process of adjustment towards the

steady-state.

*** Fig. 5 ***
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6 Habit Persistence

In this section, we extend the discounting bias analysis to a setting where consumption

choices are subject to habit persistence. This extension serves the purpose of showing

that the adaptation of the standard intertemporal optimization model in order to include

the discounting bias is flexible enough to approach other meaningful issues concerning the

analysis of utility dynamics.

Habit persistence is modeled through the consideration of the following utility func-

tion,2

u(ct, ct−1) = ln(ct − bct−1), b ∈ [0, 1) (14)

According to (14), when b = 0, we have the conventional version of the model without

habit persistence; a positive b indicates that utility is directly dependent on how much

more the individual consumes today, relatively to consumption in the previous period. As

it is obvious, the larger the value of b the stronger is the habit persistence effect. Constraint

ct > bct−1 must hold, in order to guarantee a feasible solution.

Consider the problem in section 4, relating utility maximization under the exponential

discounting bias, subject to resource constraint (4). Now, the problem takes the form

V (at) = max
c

{
u(ct, ct−1) + β1−θ0

[
V (at+1)− (1− βθ1)u(ct+1, ct)

]}
(15)

Following the same procedure for the computation of first-order conditions as before,

one arrives to the dynamic equation of consumption,

ct+1 = bct +
β1−θ0(1− βθ1)(1 + r)

2−βθ1+r
ct−bct−1 −

1
β1−θ0 (ct−1−bct−2)

(16)

which is equivalent to

ψt+1 = b+
β1−θ0(1− βθ1)(1 + r)

2−βθ1+r
ψt−b

− 1
β1−θ0(1−b/ψt−1)

1

ψt
(17)

Proposition 5 The optimal control problem of the representative household under expo-

nential discounting bias and habit persistence has three steady-state points: ψ∗ = β1−θ0(1+

r) ∨ ψ∗ = β1−θ0(1− βθ1) ∨ ψ∗ = b.

Proof. By taking ψ∗ := ψt+1 = ψt, one transforms difference equation (17) into

`1 (ψ∗)3 − (`2 + b`1) (ψ∗)2 + (`3 + b`2)ψ
∗ − b`3 = 0,

with `1 := 1/β1−θ0 , `2 := 2− βθ1 + r and `3 := β1−θ0(1− βθ1)(1 + r).

2See Heer and Maussner (2005) for a more general presentation of the utility function with habit
persistence and corresponding analytical treatment.
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The solutions of the equation are ψ∗ =
`2±
√
`22−4`1`3
2`1

∨ψ∗ = b, which correspond to the

ones in the proposition

Comparing with the problem without habit persistence, we have now an additional

solution, ψ∗ = b, but the other two remain exactly the same. Again, the representative

agent chooses the path that opens the door for a possible positive steady-state growth rate

of consumption, i.e., ψ∗ − 1 = β1−θ0(1 + r)− 1.

If we include the habit persistence feature in the growth model with capital accumula-

tion, the result is that, once more, this extension does not interfere with the steady-state

outcome and with the stability properties of the system. The steady-state continues to

correspond, as before, to a saddle-path stable equilibrium. Under habit persistence, sys-

tem (12), which characterized growth dynamics, takes now the form of a four-dimensional

set of relations, 

kt+1 = Akηt − ct + (1− δ)kt

ct+1 = bct +
β1−θ0 (1−βθ1 )

[
1+ηAk

−(1−η)
t −δ

]
2−βθ1+ηAk−(1−η)t −δ

ct−bzt
− 1

β1−θ0 (zt−bvt)

zt+1 = ct

vt+1 = zt

(18)

In the steady-state, c∗ := ct+1 = ct = zt = vt and k∗ := kt+1 = kt. The evaluation of

(18) under the previous conditions leads to an exact same outcome as the one in proposition

2. Habit persistence does not change the unique equilibrium point towards which the

economy converges in the long-run.

Stability could be addressed as in the case b = 0. We present the linearized system,

in the steady-state vicinity, but we do not pursue a generic discussion on the signs of

the eigenvalues. Instead, we just characterize stability resorting to a small example. The

linearized system is:


kt+1 − k∗

ct+1 − c∗

zt+1 − c∗

vt+1 − c∗

 =


1/β1−θ0 −1 0 0

j(1− b) 1 + ĵ + b −ĵ(1 + b)− b ĵb

0 1 0 0

0 0 1 0

 .

kt − k∗

ct − c∗

zt − c∗

vt − c∗

 (19)

where j is the same combination of parameters as in section 5 and ĵ = 1
β1−θ0 (1−βθ1 ) .

Reconsider the numerical example of the previous sections (β = 0.97, θ0 = 0.95, θ1 =

23, η = 1/3, A = 1, δ = 0.05). For these values, independently of the degree of habit

persistence (i.e., of the value of b), one finds, for the Jacobian matrix in (19), a pair of

eigenvalues inside the unit circle. Therefore, habit persistence does not change the stability

result previously found: saddle-path stability holds, what implies that the representative

agent will be able to control the consumption path in order to place the system on the

stable arm, through which the economy converges towards the steady-state.
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7 Conclusion

People do not evaluate future outcomes as if they were computers or calculators. Mea-

suring the future value of some current event or the present value of some future event

is many times an intuitive process in which individuals engage. In the same way there is

evidence of an exponential growth bias, according to which individual agents tend to lin-

earize the sequence of accumulated future outcomes, we can conceive a kind of exponential

discounting bias, according to which we may explain the evidence that points to decreasing

impatience and that is analytically translated in the concept of hyperbolic discounting.

The notion of exponential discounting bias is more general than the one commonly

used by economists to characterize observed intertemporal preferences, i.e., the notion of

quasi-hyperbolic discounting. This allows for a flexible analysis, where we can shape the

trajectory of the discount factor in the way we find more reasonable in order to be as close

as possible to what evidence reveals.

Furthermore, the new specification has appealing features from an analytical tractabil-

ity point of view: because the bias originates on a misperception about how to evaluate the

future that does not introduce any kind of sophistication on individual behavior, i.e., any

kind of ability to understand that the perception of the future will change as time evolves,

the optimization model can be approached similarly to what is done in the exponential

discounting case.

When assessing the dynamics of an intertemporal representative consumer growth

model in discrete time, the exponential discounting bias assumption has allowed to con-

struct a three dimensional dynamic system, from which it is straightforward to analyze

steady-state properties and transitional dynamics. The analysis makes it possible to pro-

ceed with a thorough characterization of how different intertemporal preferences may shape

the optimal relation between capital accumulation and consumption.

The exponential discounting bias concept is adaptable to other features of the bench-

mark utility analysis. Specifically, in this paper, one has explored the implications of

introducing habit persistence into the utility function; the conclusion is that steady-state

and stability results remain basically the same when the new assumption is taken into

consideration.
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Figures:  

 

 

Fig.1 – Discount factors for hyperbolic discounting, quasi-hyperbolic 

discounting and exponential discounting bias. 

 

 

Fig.2 – Comparison between hyperbolic discounting and the two 

approximations (quasi-hyperbolic discounting and exponential 

discounting bias). 
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Panel a – Capital stock steady-state value. 

 

 

Panel b – Consumption steady-state value. 

 

Fig. 3- Steady-state values of capital and consumption for different values 

of parameters β and θ0. 
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Panel a – λ1 

 

Panel b – λ2 

 

Panel c – λ3 

Fig.4 – Eigenvalues for different values of parameters η and δ 

(exponential discounting bias case). 
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Fig. 5- Slope of the stable trajectory for different values of parameters θ0 

and θ1. 
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