ERC) Economcs ISCTE
X RESEARCH CENTER Lisbon University Institute

Optimal Monetary Policy
with Partially Rational Agents

Orlando Gomes
Vivaldo M. Mendes
Diana A. Mendes

ISCTE - Lisbon University Institute

UNIDE - ECR

AV FORCAS ARMADAS

1649-126 LISBON-PORTUGAL

http://erc.unide.iscte.pt Working Paper - 22/08




Optimal Monetary Policy with Partially Rational Agents

Orlando Gomes !, Vivaldo M. Mendes 2, Diana A. Mendes *

- July 2008 -

!Corresponding author: Escola Superior de Comunicacdo Social, Campus de
Benfica do IPL, 1549-014 Lisbon, Portugal. Phone number: + 351 93 342 09 15;
fax: + 351 217 162 540. e-mail: ogomes@escs.ipl.pt.

2ISCTE and UNIDE/ERC, Lisbon. e-mail: vivaldo.mendes@iscte.pt

3IBS Business School and UNIDE/STATMATH - ISCTE, Lisbon. e-mail: di-
ana.mendes@iscte.pt



Abstract

We explore the dynamic behavior of a New Keynesian monetary policy prob-
lem with expectations formed, partially, under adaptive learning. We con-
sider two alternative cases: on the first setting, the private economy has the
ability to predict rationally real economic conditions (the output gap) but it
needs to learn about the future values of the nominal variable (the inflation
rate); on the second setup, private agents are fully aware of future inflation
rates, however they lack the ability to predict instantly the correct values of
the output gap (learning is attached to this variable).

In both cases, we find a simple condition indicating the required learning
quality that is needed to guarantee local stability. To achieve convergence to
the steady state, the economy does not need to attain full learning efficiencys;
it just has to secure a minimum learning quality in order to attain the desired
long run result.
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1 Introduction

To study the impact of monetary policy decisions over the short-run behavior
of the economic system, economists typically use a benchmark model known
as the New Keynesian monetary policy model [see, e.g., Clarida, Gali and
Gertler (1999), Woodford (2003)]. In this model, the central bank solves
an optimal control problem (that, here, we consider fully deterministic and
defined in discrete time), in which it controls the time path of the nominal
interest rate, with the goal of attaining the desired time trajectories for
inflation and for the output gap.

A main feature of this monetary policy model is that it attributes a
relevant role to present expectations about future values of the endogenous
variables. In a deterministic setting, typically a straifghtforward perfect
foresight assumption is taken, that is, it is assumed that private agents in the
economy possess information and are able to process it optimally such that
they do not incur in forecasting mistakes: the expected value at t of the value
of a variable at 41 will be the value to observe at t+1. This ability of private
agents in making forecasts that are not subject to any kind of error is a strong
and demanding assumption. As noted by Marcet and Sargent (1989) and
Evans and Honkapohja (2001), this assumption would mean a capacity of
the agents of the economy in collecting and processing information that is far
beyond the capabilities of any human being. Analytically, in the context of
monetary policy models, perfect foresight leads to the emergence of a linear
system, which is, under conventional assumptions, saddle-path stable.

Here, we add to the perfect foresight hypothesis the possibility of some
expectations being formed through an adaptive learning mechanism. More
specifically, we consider two alternative cases: on the first setting, the pri-
vate economy has the ability to predict rationally real economic conditions
(the output gap) but it needs to learn about the future values of the nom-
inal variable (the inflation rate); on the second setup, private agents are
fully aware of future inflation rates, however they lack the ability to predict
instantly the correct values of the output gap (and, thus, they learn them).

The two referred cases are studied in terms of local dynamics (in the
vicinity of the unique steady state point that the system contains). In both
cases, we find a simple condition indicating the required learning quality that
is needed to guarantee stability. To achieve convergence to the steady state
(i.e., stability), the economy does not need to attain full learning efficiency;
it just has to secure a minimum learning quality in order to attain the desired
long run result (although, for reasonable parameter values, we encounter this
threshold value close to the maximum efficiency level, i.e., to the learning
ability level able to generate a perfect foresight steady state).

The paper is organized as follows. Section 2 presents the benchmark
model. Section 3 introduces the learning mechanism and addresses local
dynamics. Section 4 concludes.
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2 The Optimal Monetary Policy Model

In a given economy, the central bank controls the nominal interest rate
(it > 0) and it has, as objective function,

1+00 t *) 2 *\2
Vo =—5> 8" [(m — ) + ala — 2*)?] (1)
t=0

The objective function (1) indicates that the monetary authority goal is
two-fold: it intends to minimize, assuming an infinite horizon, the difference
between the observed inflation rate (m; € R) and the target that is chosen
for this variable (7*) and the difference between the observed output gap
(x¢ € R) and the corresponding target (z*). The output gap is defined as
the difference in logs between effective output and some measure of potential
output and the inflation rate is simply the percentage change of the price
level. Constant 5 € (0,1) is the intertemporal discount factor and parameter
a > 0 represents the weight of the output gap objective, relatively to the
inflation goal, in the monetary authority objective function.

The central bank will maximize (1), subject to two state constraints:

1) IS (investment-savings) equation:

ry = —p(iy — Bymi1) + Eyxe1, o given (2)

In equation (2), ¢ > 0 measures the sensitivity of the output gap to
changes in the real interest rate (i; — Fymy1) and the operator E; relates to
today’s expectations of future values.

2) New Keynesian Phillips curve:

m = Ay + BEymie1, To given (3)

In equation (3), parameter A € (0,1) is a measure of price stickiness.
The closer this value is to zero, the stronger is the degree of price stickiness
or sluggishness.

The maximization of Vj subject to the two state constraints allows to find
an optimal relation between the expected value of the output gap and values
at t for both endogenous variables. To arrive to this equation, we build a
current-value Hamiltonian function (pf and pJ are the shadow prices of the
output gap and inflation, respectively),

H(xtv Wtaituptxup?) = _5 [(7Tt - 7T*)2 + a(ﬂft — a:*)2]

1 A 1-— A
+0pi1¥ <it - EWt + 5$t> + BPi1 (Bﬁﬁt - 5$t> (4)

First-order optimality conditions are,
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Hi=0= pBpi, =0 (5)
Bpii1 —pf = —Hy = Bpi — pi = a(we — %) — A\piq + Apiy (6)

/310?4-1 —p; = —Hy = 5P?+1 —p; =T — T +Ptm+1 - (1 - B)P?H (7)

lim x6'f = lim mB'pf =0 (transversality condition) (8)
t—+o00 t—+o00

From the optimality conditions, it is straightforward to obtain the dy-
namic relation

A2 A A
Exip1=(14+—= )z — —=m + —7" 9
tTt41 <+aﬂ>t aBH_a (9)

Equation (9) together with the Phillips curve constitute the two equa-
tion - two endogenous variables system that we are interested in addressing

analytically. From this system we withdraw two relevant results:!

Proposition 1 The dynamic system obtained from the central bank in-
tertemporal optimization problem has a unique steady state (T, ﬁ):<¥ﬂ'*; 7T*) .
Proposition 2 Under perfect foresight (i.e., Eyrii1 = xiy1, Eymipr =
T+1), the monetary policy system is saddle-path stable.

3 Adaptive Learning

For the treatment of the difference equations system, we will consider two
alternative settings:

A) Inflation learning / output gap perfect foresight: Ejxiy1 = 2y41;
Eymypq = by (with b an estimator of inflation based on past information);

B) Output gap learning / inflation perfect foresight: Eixir1 = bfxy;
Eymip1 = mp1 (with bF an estimator of the output gap based on past
information).

The two settings reveal two interpretations of the reality: in the first,
agents can anticipate with precision how real economic conditions will evolve,
but they lack the ability to make perfect forecasts regarding inflation. On
the second setting, the opposite occurs: nominal or monetary phenomena is
predicted with accuracy, but agents need to learn to predict the evolution
of the output gap.

'Proofs of propositions are omitted in order to save space.
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Learning dynamic rules are adapted from Adam, Marcet and Nicolini
(2008), and they are as follows:

Case A:
T =0 L g ), b g 10
¢ =041 T 0 i—1 ], bp glven (10)
Tt—2
Case B:
T e X B gi 11
t =t o | t—1 ) Vp given (11)

Specially relevant in expressions (10) and (11) is variable o; € [0, 1]. This
is known as the gain variable or gain sequence, and it may be interpreted
as a measure of the quality of learning. If oy — 0, then learning is efficient
(perfect foresight holds asymptotically). Otherwise, if o — @ € (0,1), then
some degree of learning inefficiency prevails, meaning that the quality of
learning is as better as the lower is . We will find that & will be decisive
in terms of the model’s stability properties.

3.1 The Learning Inflation Case (Case A)

Let us begin by case A, in which output gap expectations are formed under
perfect foresight and inflation expectations are generated through a process
of adaptive learning. Resorting to rule (10), the two-equations system that
describes the economy’s dynamics is now transformed in a three-equations
system, as follows,

2
Ty = (1 + 2‘*/3) Tl — %Wtfl + %W*
Tt (1—o¢) =1 _%(5”71 —1) (12)

Tt—1 #t—1

Zt = Tt—1

Recalling that the system has a unique steady state point, according to
proposition 1, we linearize the system in the vicinity of this steady state
point, in order to search for local stability conditions under learning,

Ty — T
me—m | = (13)
2z — 7
A2 A _
31+@ B ) 0 Tt—1—X
A A = =, B = DY B = |. —7*
- T1° 170+t1%apizp ~1-8° T
0 1 0 Zt—1—T

Note that the Jacobian matrix in (13) is of dimension three. It is known
that for dimension three systems, the following are the necessary stability
conditions [see Brooks (2004)],
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1 — Det(J) >0
1—XM(J)+Tr(J)Det(J) — (Det(J))* >0
1-Tr(J)+XM(J)— Det(J) >0
1+ Tr(J) + SM(J) + Det(J) > 0
with Tr(J), XM (J) and Det(J) representing, respectively, the trace, the

sum of principle minors and the determinant of the Jacobian matrix.
These conditions allow to state proposition 3,

(14)

Proposition 3 The optimal monetary policy model with inflation expec-
tations formed under adaptive learning possesses a stable steady state for

Tr(J Tr(J 2 ~ *+a
Det(J) < # — x \/(2()_%) —|—2—T’I"(J), with » = 22;‘2_:‘2(1%,,

Tr(J) =2+ 2a - 0 Det(d) = 125 (1+ ) &

The condition in the proposition corresponds solely to the upper bound
of the second inequality in (14). This is so because: (i) the lower bound of the

2
second inequality in (14), i.e., Det(J) > Tg(‘])—%—\/(TTQ(‘]) - %) +2-Tr(J),

holds for any positive value of the determinant (the expression in the right
Tr(J)
2

side of this inequality is a negative quantity); (ii) verifying that

2
7+ \/(TTQ(J) - %) +2—Tr(J) < 1, we confirm that stability condition

Det(J) < 1 will hold; (iii) the last two inequalities apply universely, 1 —
Tr(J)+XM(J)—Det(J) >0« Det(J) > 0; 1+Tr(J)+XM(J)+Det(J) >
0 Det(J) > — 22T ().

A numerical example clarifies the stability result and allows to express
it as a constraint on the steady state level of the gain variable. Consider the
following benchmark values (quarterly data): a = 0.25; A = 0.024; 8 = 0.99.
In this case, » := 0.501161; Tr(J) = 1.7696 + 987; Det(J) = 99.23047.
Applying proposition 3, @ < 9.982 x 1073. This is the required stability
condition, i.e., the condition that guarantees convergence to (Z, 7).

The stability result may be addressed graphically. The dynamics of the
proposed system correspond to the following trace-determinant relation:

ot =5 (14 3) (i) o () 0.

or, for the considered parameter values, Det(J) = —1.79182+41.012555Tr(J).

In figures 1 and 2, we draw this line, along with the various bifurcation
lines corresponding to the borders of the stable area. The stable area is the
one confined to the intersection of the several conditions. For the case in
appreciation, stability will exist from Det(J) = 0 (which is equivalent to
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o = 0) until the first bifurcation line is crossed. In figure 1, the general
picture does not allow for an immediate perception of which bifurcation line
is first crossed, and this is the reason why a detail of figure 1 is presented
as figure 2.

#5F foures 1,2%%F

By changing the value of each parameter in 10% (in the case of the dis-
count factor, it is the discount rate that is changed 10%), we can understand
how the stability condition is modified. Table 1 reveals that the stability
condition is relaxed for a larger a, a lower A and a lower .

a A I3 Stability condition
0.225 | 0.024 | 099 |7 <9.9791 x 1073
0.275 | 0.024 | 0.99 | 7<9.9845 x 1073
0.25 [ 0.0216 | 0.99 | 7 <9.9873 x 1073
0.25 | 0.0264 | 0.99 | 7 < 9.9766 x 1073
0.25 | 0.024 | 0.989 | 7 < 1.0982 x 1072
0.25 | 0.024 | 0991 | 7 < 8.9827 x 1073

Table 1 - Sensitivity analysis (case A).

3.2 The Learning Output Gap Case (Case B)

When the private economy is able to forecast perfectly the inflation level
for subsequent periods of time, but the output gap is subject to adaptive
learning, the system of difference equations that interests us is,

1 A
T = gﬂtfl - E-thl

_ -7/
" im0 ()t e (3 1o
UVt = Tg—1
Linearizing in the steady state vicinity,
T — 7
xp—T | = (17)
V¢ — T
1 A %
B B T—1—T
5-3(1-7) 1-6-3+%5 %7 || @17
0 1 0 Vt—1—7

The main result is now the following,

Proposition 4 The optimal monetary policy model with output gap expec-
tations formed under adaptive learning possesses a stable steady state for
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2
Det(J) < T _ o 4 \/(Tg(‘” - g) +2—Tr(J), with ¢ := 1 (1 n Aﬁ)
Tr(J) = (1-70) + %57; Det(J) = 7.

>

As in the previous case, Tr(J) and Det(.J) represent trace and determi-
nant of Jacobian matrix. Once again, we can exclude the first and the last
two conditions of (14), since these correspond to universal conditions under
the proposed setting (0 < Det(J) < 1 and Det(J) > —ﬁTr(J)). The
lower bound on the second condition is also neglect because it would imply
a negative determinant, which is not possible. Thus, the stability condition
is again confined to the upper bound of the second stability condition.

For the numerical illustration, we use the same benchmark values as
before, which in this case imply Tr(J) = 1+430.68757; Det(J) = 434.02787.
Applying proposition 4, & < 2.298 7 x 1073. As in case A, stability requires
a high learning efficiency, i.e., we must have a steady state gain variable
value near zero (near the asymptotic rational expectations equilibrium) in
order to guarantee stability.

Figures 3 and 4 present the system’s dynamics, once more taking a
trace-determinant diagram. The case in appreciation implies Det(J) =
ﬁ (T'r(J) — 1), or, in the specific numeric example, Det(J) = 1.0125Tr(.J)—
0.0125. Figure 3 presents in bold the line referring to the dynamics of the
system. The other lines are bifurrcation lines. The system is inside the
unit circle as long as @ remains below a relatively low value; a bifurcation
is crossed at @ < 2.2987 x 1073, a fact that in graphical terms, is better
perceived through the detailed presentation of figure 4.

KoKk ﬁg’LLT’ES 374***

As in case A, we allow parameter values to vary in order to understand
how such changes modify the stability result. Table 2 indicates that the
stability condition is relaxed for a lower a and a higher A, while changes in
[ are irrelevant.

a A Jé] Stability condition
0.225 | 0.024 | 0.99 |7 < 2.5535 x 1073
0.275 | 0.024 | 0.99 | 7 <2.0902 x 103
0.25 | 0.0216 | 0.99 | 7 < 1.8628 x 1073
0.25 [ 0.0264 | 099 | 7<2.7802 x 1073
0.25 | 0.024 | 0981 | 7 < 2.2987 x 1073
0.25 | 0.024 | 0.991 | 7 < 2.2987 x 1073

Table 2 - Sensitivity analysis (case B).
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4 Conclusion

We have undertaken a stability analysis of an optimal monetary policy model
with inflation (output gap) expectations formed under adaptive learning
and output gap (inflation) expectations formed under perfect foresight. In
both cases, convergence to the unique steady state requires a minimum
learning quality close to the perfect foresight outcome (otherwise, the system
is saddle-path stable / unstable). We also found that learning requirements
are relaxed with higher a, lower A\ and lower 3 (case A); and with lower a and
higher A (case B). the main policy implication of the model is that public
authorities should promote the private economy capabilities regarding the
collection and processing of information if they want monetary policy goals
to be accomplished.
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Trace-determinant relation (case B)
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