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Abstract

In this paper, we explore the dynamic properties of a group of simple deter-
ministic difference equation systems in which the conventional perfect fore-
sight assumption gives place to a mechanism of adaptive learning. These
systems have a common feature: under perfect foresight (or rational ex-
pectations) they all possess a unique fixed point steady state. This long
term outcome is obtained also under learning if the quality underlying the
learning process is high. Otherwise, when the degree of inneficiency of the
learning process is relatively strong, nonlinear dynamics (periodic and a-
periodic cycles) arise. The specific properties of each one of the proposed
systems is explored both in terms of local and global dynamics. Two macro-
economic models are used to illustrate how the formation of expectations
through learning may eventually lead to awkward long term outcomes.

Keywords: Adaptive learning, Nonlinear dynamics, Stability proper-
ties, Economic models.

JEL classification: C61, C62, D84, E32.
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1 Introduction

In the last few years, a large amount of literature has been produced on the
subject of the formation of expectations under learning. This has emerged as
a new paradigm that gradually replaced, in many areas of economic thought
(and more specifically in the explanation of macroeconomic phenomena), the
rational expectations hypothesis as formulated by Muth (1961) and applied
to macroeconomics by Lucas (1972). Following the criticism of Marcet and
Sargent (1989) on the too demanding nature of rational expectations (in
what concerns the capacity of private agents in collecting information and
using it optimally) it is today commonly accepted that a learning mechanism
is able to better describe the true process of expectations formation by the
agents in the economy.

Approaches to macroeconomic issues that assume expectations formed
through learning comprehend a huge number of studies that one cannot cite
here in a systematic and complete way. We refer the reader to some of
the main references, as Evans and Honkapohja (2001, 2008), Honkapohja
and Mitra (2003, 2006), Giannitsarou (2003) and Bullard and Mitra (2002).
These studies focus on macroeconomic expectations in stochastic models,
and they analyze stability and determinacy properties, inquiring essentially
about the conditions that allow for convergence to a long run rational ex-
pectations outcome.

One of the most popular learning rules that is considered by the previous
authors and others dealing with the same issues is the adaptive learning rule,
under which agents act as econometricians, estimating, in each time moment,
the value of the economic variables for the following periods of time. As new
information arrives, expectations are updated and this process continues in
time until eventually a long term state is reached; in this state, learning is
no longer necessary (agents have already learned what they needed to form
long run rational expectations). The argument is that an efficient learning
process is a process in which learning leads to an asymptotic result of perfect
foresight.

Instead of assuming perfectly efficient learning and therefore asymptotic
rational expectations, one may imagine a process of learning where, as new
information arrives allowing to improve expectations, there is also a memory
loss or an imperfect knowledge component that is perpetuated, meaning that
the long run state is one in which learning will continue indefinitely. This
constant gain learning assumption (in opposition to the decreasing learning
hypothesis that underlies the asymptotic rational expectations specification
of learning), allows to reproduce long run nonlinear dynamics, which have
been studied in the literature mainly in the context of overlapping generation
models.

Some of the studies on macroeconomic expectations under adaptive learn-
ing that focus on the characterization of long run non conventional dynamic
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properties of the underlying systems include Bullard (1994), Cellarier (2006),
Gauthier (2002), Hommes and Sorger (1998), Schonhofer (1999) and Sorger
(1998).! The main lesson that one withdraws from these studies is that as
long as one assumes an asymptotically positive constant gain sequence, non-
linear dynamics will eventually arise and endogenous business cycles become
an essential feature of the long term trajectories of the variables involved in
the analysis.

In this text, we will explore the dynamic features of simple determinis-
tic difference equation systems in which the conventional perfect foresight
assumption gives place to a mechanism of adaptive learning. General non-
linear results are explored and macroeconomic examples will illustrate these
results. The intention is to provide a framework for an easy identification
of stability conditions in low dimensional systems with expectations formed
under learning and in the presence of inefficiency elements that prevent the
system to converge to a perfect foresight long run outcome. Besides find-
ing stability conditions, the general settings and the macroeconomic models
intend to characterize the behavior of the system out of the stable area.
A global analysis is conducted, and one verifies that while some specifica-
tions imply period 2 cycles after a bifurcation is crossed, in other setups
high-periodicity and a-periodic fluctuations are evidenced.

The richness of dynamic results emerges as the outcome of a bounded ra-
tionality setting that is perpetuated over time. In other words, the models to
explore assume a less than perfect process of learning. Our argument is that
an asymptotic constant learning outcome is more suitable to characterize
real life conditions, in the sense that on one hand agents learn through time
improving their knowledge about the phenomena in consideration, but, on
the other hand, individuals also forget and lose part of the previously accu-
mulated knowledge as time goes by. The following sentence, by Sobel (2002,
p. 241), helps in clarifying our argument; about learning models, the author
makes the following comment: ’Agents in these models begin with a limited
understanding of the problems that they must solve. FExperience improves
their decistons. Death and a changing environment worsen them’.

In a learning context, the primary implicit assumption is that agents
lack information. They are not able of automatically forming rational ex-
pectations because they have to apprehend the environment that surrounds
them, and no agent is able to instantaneously solve a given problem with-
out a time period devoted to learning. In this sense, the learning process
is strictly related to the notion of time: it encompasses the time needed to
make optimal decisions. The main issue is whether agents will be able to
achieve a full understanding of the situation in order for their knowledge to

'The study by Cellarier (2006) departs significantly from the other ones because it
studies the effects of constant gain learning over an intertemporal optimization growth
model, rather than considering an OLG framework.
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be complete and therefore for them to be fully efficient in choosing among
different options or predicting future values of given economic aggregates.
In Sobel (2002), the fundamental requisites of an optimal learning process
(i.e., a learning process leading to asymptotic rational expectations) are the
following: (i) a sensible starting point must exist (agents are only able to
learn if the initial state is such that it allows to somehow follow a path that
leads to a full understanding of the problem at hand); (ii) the environment
should be stationary or it should change in a predictable way (otherwise,
it is straightforward to understand that a non stationary environment will
induce a never ending learning process); (4i¢) the costs to obtain and process
information must not be too high (if they are, agents must weight the costs
and benefits of gathering information and they will eventually stop to collect
information before a complete understanding of the phenomena is accom-
plished).

One important feature of the systems that are analyzed throughout the
paper is that the perfect foresight outcome (i.e., stability at the steady state
level of the variable that is achieved under perfect foresight) does not require
a complete convergence to long run rational expectations. The system may
deviate from such long term outcome and still produce the desired stability
result. This indicates that, if information is costly, agents should not make
an effort to know everything about the problem at hand, but to locate in
the point in which the result is the desired one and where there is the high-
est possible savings regarding the information collecting process. In other
words, to act optimally does not necessarily pay: it allows to achieve an out-
come that is obtainable with less than complete information, and therefore
with lower costs. Finding the point of bifurcation (i.e., the point concerning
to the amount of information / knowledge below which the stable outcome
does no longer hold) introduces a non conventional notion of efficiency and
rationality: who is the most rational agent, the one that gathers all the
information to take the right decision or the one that knows that it is not
necessary to acquire all the existing knowledge to arrive to the exactly same
decision? This point is addressed in Orphanides and Williams (2007), who
develop the notion of imperfect knowledge in the context of monetary policy
problems. These authors realize that learning can be interpreted as a rel-
atively modest deviation from rational expectations and therefore nest this
as a limiting case.

The remainder of the paper is organized as follows. Section 2 explores
five simple difference equation systems with adaptive learning in the for-
mation of expectations. In all these models, long term nonlinear dynamics
arise as the quality of learning decreases; in some systems, only period two
cycles are identified, while in others cycles of higher periodicities and fully
a-periodic cycles are generated. Section 3 explores two simple macroeco-
nomic examples. The first regards the convergence of inflation to a specified
target rate. Where under perfect foresight stability is guaranteed, under
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learning one may obtain a result of permanent fluctuation of the inflation
rate around its target. The second example relates to the intertemporal
optimization growth model; by inserting the state variable as an argument
of the utility function and by assuming that expectations about the shadow
price of capital are generated through learning, one encounters, also in this
case, the possibility of nonlinear motion for both endogenous variables: the
stock of capital and the control variable, which is the amount of consump-
tion. Section 4 concludes.

2 Five Models of Learning

We develop five generic models in which expectations are formed through
learning. In each one of them, we encounter nonlinear dynamic behavior
that in some cases will correspond solely to period 2 cycles, while in more
sophisticated difference equation systems chaotic motion is easily identified.
The aim of this section is to provide some benchmark cases that are easily
adaptable to the study of aggregate phenomena.

2.1 Expectations over an exogenous value

The first model to consider is a one dimensional system in which expectations
about the next period level of an endogenous variable x; € R correspond to
the contemporaneous value of an exogenous variable y; € R, i.e., Fyxir1 = 4t
(y: given). To the exogenous variable we impose the condition of possessing
a unique steady state ¥y = {y : y1 = yp4+1}-

Expectations are formed through adaptive learning, in such a way that
Eyxy 1 = bz, with by an estimator based on past information. The esti-
o
as in Adam, Marcet and Nicolini (2006). Variable o; € [0,1] is central to
the analysis and is generally known as the gain sequence. Decreasing gain
is considered when one intends to translate the idea of efficient learning,
i.e., when although agents learn through time, in the long run they are able
to form expectations in a fully rational way and therefore they possess, as-
ymptotically, perfect foresight. The decreasing gain sequence is such that
variable oy converges to zero as the system tends to the steady state. The
dynamics underlying this type of learning gain can be expressed through the
following rule: o411 = 0¢/(1+0¢), 0o given. The intuition underlying an ef-
ficient learning process is that in the long term predictions become accurate
and therefore the agents do not need to learn anymore. Defining variable
a; = 1/0y, one is able to better understand the concept of efficient learning;
the variation of oy in time can be interpreted as a learning increment; ob-
serving that a;y1 — oy = 1, one realizes that the increments are constant,
i.e., in every time moment from t to infinity, the representative agent is able

mator follows the dynamic rule b; = b;_1 + oy - ( — bt_1> , (bo given),
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to improve her decision making abilities.

An alternative interpretation of the gain sequence may be assumed, re-
vealing a less than efficient learning result. Suppose now the following rule
for the motion of the gain variable: o111 = 01/(1+ 04 + dotInoy), op given.
In this case, we added to the above rule a memory loss term. Such a term
is supposed to translate the idea that learning will occur as new informa-
tion becomes available, but some of the previously stored information is also
lost. Considering variable oy, we are now stating that a1 —ay = 1 =0 In oy,
i.e., to the perpetual efficiency constant gain we subtract an information /
knowledge depreciation or obsolescence term; as presented, this term indi-
cates that diminishing marginal returns characterize the loss of previously
stored knowledge.

The second specification implies the existence of two steady state points
for the gain variable; @ = 0 is still a fixed point but it is no longer a
stable fixed point, and therefore convergence to a perfect foresight outcome
does not occur unless § = 0. For § > 0, the stable steady state is the point
o = exp(—1/6). Since we need to have o; < 1, then we impose the constraint
d <exp(1).

The specification of the gain sequence under inefficiency, memory loss or
imperfect knowledge allows to consider a long term constant gain setting,
rather than decreasing gain. It is well known in the adaptive learning lit-
erature that constant gain allows for finding nonlinear dynamical behavior
(as pointed out in the introduction). For some specific models we explore in
what follows the properties of such nonlinear behavior.

Let us return to system FEiz:11 = y:. Replacing, in the estimator ex-
pression, the estimator by the ratio between the expected value of z; and
the contemporaneous value of the variable, this yields the following system
(presented one period ahead):

T — Yt
{ 1= O=oir)ye/zitorz/z (1)
Zt+1 = Lt

Variable z; is defined as the value of variable z; in period ¢t — 1. System
(1) reveals the existence of a unique steady state value for z; : T = 7.2

Local dynamics are, in this simple case, straightforward to analyze. The
most relevant characteristic is that long run local dynamics will depend only
on the gain variable steady state value and not on 7.

Proposition 1 In the simple case in which expectations correspond to the
contemporaneous value of an erogenous variable, the system is stable for
o < 2/3 and saddle-path stable otherwise. Point @ = 2/3 refers to a flip
bifurcation point.

2We will find, as we explore other models, a relevant regularity: there is a coincidence
between the rational expectations steady state and the steady state under learning.
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Proof. By linearizing system (1) in the vicinity of the steady state, one

encounters
] e
241 — T 1 0 2t — X

Conditions for stability are [let J be the Jacobian matrix in (2)],

1—=Tr(J)+ Det(J) =7 >0

1+Tr(J)+ Det(J)=2—-35>0

1—Det(J)=1+7>0

The first and the third conditions are satisfied, independently of the value
of 7 € (0,1). In the limit case, & = 0, the system is on a bifurcation point,
but one already knows that this corresponds to the rational expectations
case. The second condition holds for & < 2/3, and therefore this is the
required condition for stability. When @ = 2/3, then 1+Tr(J)+ Det(J) =0
and the system will be over a flip bifurcation. For @ > 2/3, the second
condition is violated, meaning that one of the eigenvalues of the Jacobian
matrix falls outside the unit circle. In this case, one dimension is stable
while the other one is unstable, and therefore saddle-path stability prevails
]

The result in proposition 1 may be depicted graphically. Noticing that
Tr(J) = 1— 20 and Det(J) = — 7, we establish the relation Det(J) =
[Tr(J) — 1]/2, which characterizes the dynamic behavior of the system.
Figure 1 presents the location of the relation in a trace-determinant dia-
gram; only a segment of such relation is displayed (in bold), correspond-

ing to the points in which @ € (0,1). Observe that the bifurcation line
1+ Tr(J)+ Det(J) =0 is crossed at & = 2/3.

***ﬁgure 1 KoKk

From a global dynamics point of view, the construction of a bifurcation
diagram indicates that, in this case, the bifurcation leads to a period 2
cycle for @ > 2/3. Figure 2 displays the bifurcation diagram for 7 = 1
(any other value conducts exactly to the same type of dynamics). The
first 1,000 transient observations are excluded and the graphic is built for
the subsequent 1,000 (this is the criterion used to draw the several diagrams
presented in the paper).> The main conclusion is that the long run value of z;
departs from 7 as the gain variable assumes a high value. The lower quality
of learning (translated on a higher &, that is related to stronger memory
loss) implies that the long term value of the variable will be different from
the rational expectations outcome, and this result is as much intense as the

3All the figures presented in this paper, with exception of figures 1, 3, 4 and 5, are
drawn using IDMC software (interactive Dynamical Model Calculator). This is a free
software program available at www.dss.uniud.it/nonlinear, and copyright of Marji Lines
and Alfredo Medio.
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lower is the quality of learning (observing the figure, one directly perceives
that after the bifurcation the average value of the variable falls, although to
the right of @ = 2/3, the larger value assumed by the variable in the period
2 cycle is always above the steady state value).

***ﬁgure 2***

As referred in the introduction, a relevant result of the learning analysis
consists in evaluating how much information the agent needs to attain a long
term result identical to the one corresponding to the perfect foresight case.
If information is costly and thus the agent withdraws utility from avoiding
searching for information, the best outcome is the one in which the collected
information is just enough for the agent to attain @ = 2/3; a higher gain
value does not allow to obtain the perfect foresight stable outcome, while a
lower gain value simply implies that the agent is wasting resources to obtain
exactly the same outcome.

2.2 A one-dimensional linear model

Our second specification involves a unique variable x; € R and a parameter
a that may assume any value in the real line except 1. The system is linear
and takes the form:

Eyxi1 = axy — (1 — )T, z given (3)

In equation (3), T corresponds to the steady state value of z;. Under
perfect foresight, it is straightforward to conclude that the system is stable
for a € (—1,1) and unstable otherwise. The process of learning and particu-
larly the eventual low quality of learning will change this result. Considering
again the adaptive learning mechanism of the previous section, we arrive to
the pair of equations

- (1-a)z
{ l’t+]_ - (1—0t+1)(1—a)§/zt+at+1(xt/zt—a) (4)

Zt+1 = Tt

The steady state of the system is the same with and in the absence of
learning, i.e., T (obviously, z = ).

Regarding stability, let us first look to the local dynamics results. The
analysis requires separating two cases: (i) a < 1; (ii) @ > 1. In both, the
value of T is irrelevant for the stability outcome.

Proposition 2 In the one dimensional linear adaptive learning model, un-

der condition a < 1 the system is locally stable if 7 < %
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Proof. In the steady state vicinity, the following linear system is com-
puted:

s -7 | _[1-0-7% %] [=-%
oLl R S B
Applying stability conditions, one finds:
1-Tr(J)+ Det(J) =7 >0
1+ Tr(J) + Det(J) =2 — (i%g)a >0
1—Det(J)=1+1Z >0

The first condition is satisfied for any admissible value of @. The same is

true for the third condition under the imposed constraint on a. Condition
2(1—a)

number 2 holds as long as 7 < =5—~ =
Notice that a flip bifurcation occurs at @ = % (i.e., one of the eigen-
values of J equals -1 under the referred condition). Saddle-path stability

holds for & > % Once again, we verify the relevance of the quality

of learning. Efficient learning (i.e., & low) conducts to stability; inefficient
learning (i.e., @ high) can produce absence of stability (and, as we will see
in the global dynamics analysis, it produces nonlinear motion).

Consider now the second case: a > 1.

Proposition 3 In the one dimensional linear adaptive learning model, un-
der condition a > 1 the system is locally stable if 7 < a — 1.

Proof. Consider again the stability conditions in the proof of proposition
2. For a > 1, the second condition is always satisfied. The third condition
requiresc <a—1 =

The condition in proposition 3 implies as well that if a > 2 then the
system is stable independently of the long run value of the gain variable
o¢. Instability (two eigenvalues of the Jacobian matrix larger than 1 in
modulus) arises for @ > a — 1. The point of bifurcation is associated to
the condition @ = a — 1. In this case, a Neimark-Sacker bifurcation occurs,
given that Det(J) = 1 and therefore a pair of complex conjugate eigenvalues
with modulus equal to one will be obtained from solving the characteristic
equation of J. Observe, one more time, that the lower is &, the more likely
it is to obtain stability.

The results in propositions 2 and 3 are now analyzed graphically. Figure
3 presents the areas of local stability and instability in the space of para-
meters. The differences relatively to the perfect foresight case are evident.
Now, we encounter stability where it did not exist in the perfect foresight
case (i.e., for values of a lower than -1 and above 2, independently of the
value of 7). For a € (—1,2)/{1}, stability requires a relatively low value of
.

*** figure 3 **¥*
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Complementarily to figure 3, the graphical analysis may involve the re-
lation between trace and determinant of the Jacobian matrix. The following
relation is directly obtained: Det(J) = Tr(J) — (1 — 7). According to this
expression, the relation between the trace and the determinant of J is such
that the dynamics of the model will be described by a line that is parallel
to the bifurcation line Det(J) = Tr(J) — 1, and that is located to the left of
this last one. Let us take the two cases separately; figure 4 respects to the
case a > 1 [i.e., Det(J) > 0]; figure 5 assumes a < 1 [i.e., Det(J) < 0].

FEK figure 4 R

Figure 4 draws the stability and instability results presented in propo-
sition 3. For Tr(J) > 2 — 7 (and a < 1+ @), instability prevails. When
1-5 <Tr(J) <2—-7 (and a > 14 7), the system falls in the stability
region (the segment of the displayed line is inside the inverted triangle that
represents, in the trace-determinant diagram, the area inside the unit circle).

In figure 5, the trace-determinant relation is presented for @ < 1. In this
case, the bifurcation line 1 + Tr(J) + Det(J) = 0 is crossed at Tr(J) =
—0/2 and Det(J) = —1 + /2. To the right of this point, stability holds.
To the left of the presented point, the system is saddle-path stable. Note
that as one goes up in the dynamics line (from the left to the right), the
value of parameter a decreases [observe, for instance, that a = 0 implies
(Tr(J),Det(J)) = (1 —27; —o) and that a = —1 implies (T'r(J), Det(J)) =
(-1 - (3/2)0 —7/2)].

***ﬁgure 5 Kok *k

Turning to the global dynamic analysis, one verifies that, differently from
what occurred in the first proposed model, the area of absence of stability
does not correspond solely to a region of cycles of periodicity 2. Other
periodicities and full a-periodicity (possibly chaotic motion) are also found.
Table 1 presents the largest Lyapunov characteristic exponent (LCE) of the
system for various values of parameters a and & relatively to which chaotic
motion is observed.? LCEs are a measure of divergence of nearby orbits. In
a two dimensional model as the one considered, the existence of (at least)
one positive LCE is synonymous of divergence of orbits in a sense that
one can talk about sensitive dependence on initial conditions (SDIC). In
turn, the notion of SDIC is associated with the presence of chaotic motion
(a same system produces completely distinct orbits for slightly different
initial conditions). One observes that for various pairs (a,7) that in figure
3 correspond to regions of instability / saddle-path stability, chaos is found.
Thus, irregular cycles are identified in a simple model with eventually low
quality learning.

'LCEs are computed resorting also to the iDMC software.
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*** table 1 ***

In figure 6, the relation between parameters a and @ is re-analyzed under
a global dynamics perspective. The region of cycles is the one that was
already identified as conducting to the absence of stability. Most of this
area corresponds to cases of periodicity 2, but cycles of higher periodicity
and chaotic motion are observed for relatively high values of &.

FEK figure 6

We complete the global dynamic analysis presenting three additional
figures: figures 7 and 8 display bifurcation diagrams for two different values
of a (a = 0.8 and a = 1.2) and taking & as the bifurcation parameter. The
path from stability to cyclical motion is evidenced. Figure 9 is the long
term time series of variable x; (after excluding the 1,000 first iterations of
the dynamic process) for a pair of values of a and & for which chaos is
observed.

X figures 7, 8, 9 ***

2.3 A one-dimensional nonlinear model

In this sub-section, we develop one more one-dimensional expectations sys-
tem (that, as the ones before, is transformed in a two-dimensional system
once learning is introduced). Consider now

Eixyq = a:cf, o given (6)

Since relevant dynamics are obtained essentially fora > 0and 0 < ¢ < 1,
we impose these two constraints. The steady state under perfect foresight
is T = a/(1=9)_ The same type of adaptive learning mechanism used before
is again considered, in order to arrive to the following system:

(- —1/(1-¢)
{ Tpy1 = {(1 — Ot41)T, (=) Ot4l " oty (7)

Zt+1 = Tt

Once more, the coincidence between the steady state under perfect fore-
sight and under learning is observed.

The interesting point about this model is that local dynamics are very
similar to the dynamics found in the previous linear case. In the present
formulation, the relevant parameters are ¢ and &; the value of a is irrelevant
for the dynamics.

Proposition 4 The one-dimensional nonlinear model with expectations formed
under learning is locally stable if condition T < 2(1 — ¢)/(3 — ¢) holds.

10
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Proof. Computing the linearized system around the steady state one

obtains:
SCt_A,_l—f _ 1—6—% % . Ty — T (8)
Zt41 — T 1 0 2t — T
Note that system (8) is identical to (5), except for the parameter that
appears in the denominator of the fraction in the two elements of the first
line of the matrix: it is now the parameter that introduces nonlinearity in the
system. Because ¢ € (0, 1), we restrict the dynamic analysis to the case in

proposition 2, i.e., the stability conditions are similar to the ones presented
in the proof of such proposition and the only one that is violated in some

point is 1+7r(J)+ Det(J) > 0, which now corresponds to 2 — (%) o > 0;
solving the inequality in order to @, the condition in the proposition is found
]

Given the similarities with the case of the previous section, we will not
analyze this case in detail. Just keep in mind that a figure like figure 3
could be presented replacing parameter a by ¢ and taking solely the region
in which ¢ € (0, 1), and therefore a stable region would be found to the left of
the bifurcation line and a saddle-path stability region would be encountered
to the right of such line. Once again, stability vanishes as the long run value
of o; gets relatively high. A diagram similar to figure 5 could be presented
with the segment of line that translates the dynamics of the system ranging
from (T'r(J), Det(J)) — —oo (case in which ¢ = 1) to (Tr(J), Det(J)) =
(1—-27;—0), for ¢ = 0. This segment of line passes in the bifurcation point
(Tr(J),Det(J)) = (—c/2; —1+7/2) as long as & < 2/3.

The main difference relatively to the case of propositions 2 and 3 is that
we do not encounter, in the present case, cycles with periodicity larger than
2. The region locally identified as a region of saddle-path stability is a
region of period 2 cycles and, eventually, instability. An illustration follows
with the bifurcation diagram in figure 10. We let ¢ = 0.25 and present the
corresponding relation between & and the long run value of z;. The steady
state point is achieved for @ < 6/11. The bifurcation gives place to a period
2 cycle (in the example, a value a = 1 is taken, but any other value would
generate this type of dynamics).

FEE figure 10 FFF

2.4 A simple two-dimensional model

The last two systems that will be addressed take two endogenous variables
instead of one. This will transform the system under learning into a four
dimensional system.

Assume variables x4,y € R. Let the expected value of y; to be a real
constant, a, and the expected value of x; to be the value in t of y, i.e.,

11
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Eixiy1 =y and Fyyr1 = a (29, yo given). The corresponding steady state
of the system is T =7 = a.

Considering the previously used adaptive learning scheme and letting
both learning processes concerning each variable to be subject to the same
gain sequence, the following four dimensional system is formed,

J— a
L+l = Moyt /i torriae/ze [Q—oer1)alye toer1ye/ve]
—_ a
Ytr1 = Torn)afyit oy /o (9)
241 = Tt
V41 = Ut

Locally, the computation of eigenvalues generates the result that follows,

Proposition 5 The system of expectations under learning that gives place
to the set of equations in (9) is stable for T < 2/3; otherwise, it is saddle-path
stable, with a two-dimensional stable space and a two-dimensional unstable
space.

Proof. Knowing that T =y = a, the linearization of system (9) around
the steady state yields

Tpi1 — T 1-2% - & & T — T
Y1 —Y | 0 1-26 0 @ Y —Y
Zt41 — T 1 0 0 0 2t — X (10)
Vg1 — Y 0 1 0 0 v — Y

To analyze stability, one can directly compute the eigenvalues of the
Jacobian matrix in (10). Two pairs of identical eigenvalues are obtained:
A, A2 = 3+ 3V46%2 +1 -7 and A3, \s = 5 — 3452 + 1 — 5. The first pair
of eigenvalues is inside the unit circle V& € (0,1). The second pair may be
inside or outside the unit circle; the bifurcation condition Az, Ay = 1 will
not occur for the admissible values of the gain variable, but it is possible
that A3, Ay = —1; this occurs for & = 2/3. Condition A3, Ay > —1, required
for stability, will imply @ < 2/3. Thus, if this inequality holds, the four
eigenvalues lie inside the unit circle and the system is stable; in the opposite
case, the first two eigenvalues are inside the unit circle, while the second pair
is not: the system is saddle-path stable, with two stable dimensions and two
unstable dimensions m

As in the lower dimensional cases, we regard that stability exists for effi-
cient learning processes but inefficiency causes stability to be lost. The point
of bifurcation, & = 2/3, is exactly the same one found in the first treated
example. From a global dynamics point of view, one confirms that stability
exists for @ < 2/3 and that, once again, the steady state value is irrelevant
to the qualitative nature of the dynamics. The bifurcation generates solely
period 2 cycles. Figure 11 illustrates the outcome for variable x;.

***ﬁgur@ 11 KoKk

12



Adaptive Learning and Complex Dynamics

2.5 A two-dimensional multiplicative model

Our last learning model takes the following form: FEx;y1 = axiy; and
Ewyir1 = bayye, with g, yg given and a and b any positive constants. The
steady state of the system is the point (z,7) = (1/b,1/a). The four di-
mensional system that is obtained after considering a process of adaptive
learning is the following:

Yt

_ y T
vp1 =1 —of )v +0/ T o

Yt+1 = (1 - O-tx+1)yt + Uf+1y% (11)
241 = Tt
Ut+1 = Yt

In opposition to the assumption of the previous section, we now let the
learning processes to be distinct in terms of the gain sequences. We assume
the possibility of different efficiency degrees in the learning process regarding
the formation of expectations of variables x; and ;. In the local dynamic
analysis we maintain 0 = ¢¥ in order to obtain explicit results concerning
the eigenvalues of the Jacobian matrix; in the global dynamics evaluation,
we will assume the general case o # oV to search for the impact of different
assumptions on the quality of learning over this type of formulation.

Proposition 6 In the two-dimensional multiplicative model, under the con-
straint oy == of = o}, stability is guaranteed for ¢ < 2/3; if & > 2/3, the
system will be locally characterized by saddle-path stability, with three stable
dimensions and one unstable dimension.

Proof. As usual, we find the linearized system and corresponding Jaco-
bian matrix,

Ti41 — T l-o 5'% 0 % T — X
Y1 -9y | _ | o-4 1-5 —7-£ 0 Y=y (12)
41— T 1 0 0 0 2t — I
Vi1 — Y 0 1 0 0 v —Y

The eigenvalues associated to matrix J in (12) are A1, Ay = %(1 ++1— 46)
and A3, \y = % . (1 +V1+ 452) — 7. The first two eigenvalues lie inside the

unit circle, Vo € (0,1); these are real values if @ < 1/4 and complex val-
ues with a real part lower than one in modulus otherwise. The eigenvalue

Ag = % (1 + m> — 7 is a positive real value lower than one, indepen-
dently of @ € (0,1), and therefore the only eigenvalue that may escape from
the unit circle is Ay = % - (1 - \/1—1—7452> —o. If 7 < 2/3, then |\q| < 1;
if & > 2/3, then |[A4] > 1. Four stable dimensions exist under & < 2/3; a
bifurcation point is @ = 2/3 (in this point the eigenvalue assumes the value

13



Adaptive Learning and Complex Dynamics

-1); and for @ > 2/3 there are three stable dimensions and one unstable
dimension (the system is saddle-path stable) m

Regarding global dynamics, in this case nonlinear results are not limited
to cycles of periodicity 2; irregular fluctuations (although not chaos) are
found in the following illustrative example. Consider a = 10, b = 8, 0% =
0.78 and let 0¥ be the bifurcation parameter. Figure 12 draws a bifurcation
diagram for variable x;. One might observe that an increasing value of the
steady state gain variable o¥ leads to a bifurcation that, on a first phase
produces period 2 cycles but that degenerates into a region of a-periodic
fluctuations. We consider o¥ = 0.9 to present the long run time series of
x;. The proposed values allow to evidence a-periodic motion, according to
figure 13.

*** figures 12,18 here ***

3 Economic Models

In this section, we develop two applications of the adaptive learning setup
that was discussed under five different prototype models. The first example
refers to expectations concerning inflation; two economies are taken into
account and the expectations about next period inflation in one of the
economies will be dependent on the inflation level of the other economy.
The second example refers to the Ramsey growth model, i.e., to the par-
adigm of intertemporal maximization of consumption utility subject to a
resource constraint; the differences relatively to the benchmark model are
two: the shadow-price of capital in the next period is not known with cer-
tainty but it is learned through time (using the notion of adaptive learning
taken throughout the paper) and capital is an argument of the utility func-
tion. One of the goals of the analysis, in this second case, is to understand
how one may convincingly consider that the representative agent can take
utility or disutility from the existence of a given amount of capital, when
the process of learning is considered.

3.1 A two-country inflation model

Consider two economies. The first, economy A, has an inflation target of
(m4)* which is set by the central bank. The private agents in this econ-
omy believe that, independently of the current value of inflation, in the
next period the monetary authority is capable of putting inflation on the
referred target, and therefore Eyril | = (74)*, ' given. The second econ-
omy, economy B, has also a defined inflation target, (7%)*, but the way
in which expectations about future inflation are formed is not so simple as
in economy A. On one hand, inflation expectations are dependent on the
contemporaneous level of inflation in the country; on the other hand, there
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is also a dependence on the other country’s inflation rate. The specification
is, in concrete,

Eirpyy = apmi +aa(ny — (04)*) + (1 - ap)(x”)* (13)

In equation (13), parameters a4 and ap are positive values (with ap #
1). Observe that the steady state level of inflation in economy B corresponds
to the inflation target level, as in economy A.

The adaptive learning setup is assumed; for both countries an estimator
as the one in section 2.1 is considered, as well as the respective dynamic
process. The result is the four dimensional system that follows:

Ay x
7r24+1 = ((:A))* -
(I=ot41) 5 —+orr1-x

aa(mf,—(r4))+(1—ap)(xB)*

ey

7‘[‘ prnd
t+1 aa(nA_(rAyk —a nBy* =B 14
(o) SATE D) HOap) )Jm“(waB) (14)
Tt t
A _ A
231 = Ty

\ ztBii-l = 7TtB

The question to ask in this case is whether the inflation rate in country
B converges to the target level or not. Under perfect foresight, the condition
for stability is ap € (—1, 1), regardless of the value of the second parameter,
a4. Under learning the result is not that simple, as we discuss below.

Proposition 7 In the two-country inflation model, the parameters that de-
fine stability are ap and &, and, thus, the dimensionality of the stable path
depends on their values. One dimension is stable independently of the values
of ap and @. For ap < 1, there is another stable dimension that is indepen-
dent of parameter values, while the remaining two are stable if & < 2/3 and
o <2(1—ap)/(3—ap). Forap > 1, stability is guaranteed if 7 < 2/3 and
o <ap-—1.

Proof. As in the general settings, proving local stability is achievable
through the computation of a linearized version of the dynamic system in
consideration, in the vicinity of the steady state. In the present case, we
have

T — (rh)* 1-25 0o T 0 7 — (
”EH — (xP)* _ _1%255 -0~ l—UaB 13235 1—UaB T — (
7y — () 1 0 0 0 7= (r
2y — (@) | 0 1 0 0 2~ (
(15)
The eigenvalues of the Jacobian matrix are:
A = gt |1 - 25— ap(1 - ) — /1 - 25 — ap(1 - 2 +45(1 - ap)
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X = gt 1= 25— ap(1 - 7) +/[1 - 25 — ap(1 - 2] + 45(1 - ap)

(1—ap)
Ns=1-7-1V4g2 +1
M=3-0+1iVig? +1

Eigenvalue )4 is inside the unit circle Vo € (0, 1). Relatively to As, this
corresponds to the existence of a stable dimension if & < 2/3. For the first
two eigenvalues, we have to separate between cases ag < 1 and ap > 1.
In case ap < 1, A9 is inside the unit circle independently of parameter
values; A1 is inside the unit circle if 7 < 2(1 —ap)/(3 —ap). In case ap > 1,
eigenvalues A1, Ao are a pair of eigenvalues inside the unit circle if ¢ < ap—1
and outside the unit circle otherwise m

Stability results are, thus,

(i) Four stable dimensions: & < 2/3; 7 < 2(1 —ap)/(3 —ag) [ap < 1]
org <ap—1J[ap>1].

(73) Three stable dimensions: & > 2/3; 7 < 2(1 —ap)/(3 —ap) [ap < 1]
org <ap—1J[ap>1].

(7ii) Three stable dimensions: & < 2/3; 5 > 2(1—ap)/(3—ap) [ap < 1].

(7v) Two stable dimensions: & < 2/3; 7 > ap — 1 [ap > 1].

(v) Two stable dimensions: & > 2/3; 7 > 2(1 —ap)/(3 —ap) [ap < 1].

(vi) One stable dimension: & > 2/3; 7 > ap — 1 [ag > 1].

The global dynamics analysis confirms the previous outcomes, with an
additional important result. Although parameter a4 is not relevant to de-
termine stability, the kind of fluctuations one encounters will be dependent
on the value of this parameter. Thus, the long run inflation rate in country
B can be influenced by how the other economy behaves regarding the path
of the inflation rate. Four bifurcation diagrams are presented for the rela-
tion between & and the long run value of 7. The first two take ap = 0.75;
the other two, ap = 1.25. The first and the third assume ag4 = 0.1 (a
low influence of the other country’s inflation on country B inflation ex-
pectations); the second and the fourth take agy = 0.5. One also assumes
(74)* = (xB)* = 0.02, although these target values are irrelevant to the
qualitative dynamics.

*** figures 14,15,16,17 ***

In figure 14, the parametrization ap = 0.75 and a4 = 0.1 implies that
stability exists for low values of & (lower than 2(1 —ap)/(3 —ap) = 0.222).
In this specific case, the local non stability result corresponds first to a
region of cycles of periodicity 2, and higher periodicity cycles emerge for &
around 0.7 to 0.8. When changing the value of a4 to 0.5, we get again low
periodicity cycles (in this case, only period 2 cycles), but located in different
positions then before (figure 15). Considering ap = 1.25, several regions of
cycles of high periodicity and even chaos are depicted, both for a4 = 0.1
and a4 = 0.5. The areas of prevalence of chaotic motion are not, however,
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the same in the two figures (figure 16 and figure 17). In these two last cases,
the point of bifurcation is @ = agp — 1 = 0.25.

Therefore, the main result is that economy B inflation is only dependent
on the economy’s own expectations in what regards stability properties, but
it is also dependent on expectations concerning economy A inflation when
measuring the kind of cycles that may arise when stability does not hold.

In economic terms one verifies the complexity learning may introduce in
a system otherwise simple to analyze. Cyclical motion arises, meaning that
inflation does not converge necessarily to a fixed point stable outcome, as it
could happen under perfect foresight; instead, the inflation rate can fluctuate
around a constant value, i.e. the defined target, namely in circumstances in
which the quality of learning is poor.

3.2 The Ramsey model with capital in the utility function

In this second economic application, we consider an optimal control growth
model. Utility is maximized under a resource constraint. The constraint is
the usual capital accumulation equation,

kiyr = f(ke) — et + (1 — 6)ke, ko given (16)

In equation (16), k; > 0 represents the amount of capital (per unit of
labor) available at moment ¢, ¢; > 0 is the level of consumption (also per
unit of labor) in moment ¢, and 0 < § < 1 is the capital depreciation rate.
The production function is of the neoclassical type, i.e., it exhibits constant
returns to scale and decreasing marginal returns, and the Inada conditions
hold. Note that we present the production function in intensive form; nev-
ertheless, we also assume that population does not grow, and therefore nor-
malizing the labor amount to 1, it is indifferent to refer to the variables in
levels or in quantities per unit of labor. We take a Cobb-Douglas production
function of the type f(k:) = Ak{*, with A a positive level of technology (or
measure of the total factor productivity) and « € (0,1) the output-capital
elasticity.

In what concerns the utility maximization problem, we introduce an
innovation relatively to the conventional specification. As usual, it is as-
sumed that a representative agent maximizes utility intertemporally, given
an infinite horizon and a discount factor 8 € (0, 1), but the utility function
has, as arguments, not only the consumption level but also the level of the
state variable. Several interpretations can be given for this presentation:
among others, one may consider that capital is mainly human capital, and
that the agent withdraws utility directly from a larger amount of knowl-
edge; differently, one can interpret the presence of capital in the utility
function as something that is not advantageous to the representative agent,
for instance, if more capital implies a depletion of resources, and therefore
additional physical capital emerges in the utility function as a measure of
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environmental degradation. This second interpretation is the one we will see
as appealing from a dynamic analysis point of view (introducing learning,
nonlinear dynamics emerge in the case in which the derivative of the utility
function in order to capital is a negative value).

The objective function is

“+oo
Uo = ZﬁtU(Ct, kt) (17)
t=0

The utility function is assumed as an additively separable function with
decreasing marginal utility regarding each of the arguments; the following
functional form is adopted: U(cy, ki) = Incy + mInk;. Parameter m trans-
lates the weight of capital in terms of utility; as stated, nonlinear dynamics
are obtained only for a negative impact of capital over utility, and therefore
we will explore cases in which m < 0.

The problem at hand is simply the maximization of (17) subject to (16).
The difference relatively to the conventional Ramsey growth model is that,
instead of perfect foresight, we assume that the representative agent learns
the shadow price of capital for the time period that follows. The learning
rule is the same adaptive learning procedure one has used throughout the
paper.

To solve the model, one builds the Hamiltonian function, assuming p; as
the shadow-price of capital,

H<kt7pt; Ct) =1In Ct + mln ]ﬂt + 5Etpt+1 . [Ak? — Ct — (5]{3,5] (18)

The first-order optimality conditions are straightforward to obtain,

He=0=1/c¢; = BEpeia (19)
Eiprir —pr = —Hy = [1 — 5+ adk, | BEpei1 = pe —m/ky (20
tligrn kiB'py = 0 (transversality condition) (21)

From conditions (19) and (20), one may express the level of consumption
as a function of the stock of capital and the contemporaneous price level:

10+ adk Y
pe—m/ky
Expectations concerning the shadow-price of capital are assumed to be

formed through learning. The learning estimator b; evolves according to the

Pt—1
pbt—2

(22)

Ct

adaptive rule by = b;_1 + 0% -

— bt_1>, bo given, such that Fp;11 =
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1—m/(ptk:)
B-[1-g+adk, 7]
expression into the rule and taking in consideration the capital constraint,
one arrives to the following three-dimensional system:

bip;. Thus, we can write by = . Replacing the estimator

1-6+adk 1=
kisr = Akg — =220 4+ (1= §)k
= m 23
Pi+1 kt+1~{1—6~[1—6+aAk;L<i7a)]~x(kt,1’7t7zt)} ( )
Zt+1 = Pt
1—m/(ptkt)

In system (23), we define z; = p; and z(ky, pt, 2¢) = (1—041)-

Ot+1 - S

Tozfllustrate the dynamics of the problem, we consider a numerical ex-
ample and restrict the analysis to a global dynamics discussion. Note that
the undertaken setup does not even allow to compute an explicit steady
state set of values (k,p,%,¢), and therefore no clear results can be inferred
from a local analysis.

The following benchmark values for parameters are adopted : A = 0.25,
a =1/3, 8 = 0.96. Parameter m will allow for nonlinear dynamics under
asymptotic constant gain learning if m < 0, that is, if the marginal utility
of capital is negative; the larger the stock of capital, the lower will be the
utility withdrawn by the representative agent. A possible explanation for
this eventuality is that capital accumulation produces environmental degra-
dation, and thus the larger the stock of capital, the lower will be the quality
of the environment, what has a direct impact on utility. Interesting dynamic
results are found, e.g., for m = —1.5.

In the proposed growth model, the gain variable does not emerge as a
relevant bifurcation parameter. Nevertheless, by allowing other parameters
to vary, namely the depreciation rate of capital, a period doubling route to
chaos is evidenced. Thus, we let @ = 0.75 and take § as the bifurcation
parameter. We present two figures. Figure 18 is precisely the bifurcation
diagram for variable k;; low levels of the depreciation rate imply a period 2
cycle and, as we consider higher values for 9, cycles of higher periodicity and
totally a-periodic motion arise. Figure 19 displays an attractor that reveals
the long run relation between capital and consumption, for a value of the
depreciation rate for which chaos exists (0 = 0.74). Figures 18 and 19 are
drawn using the initial values kg = 1, pg = 20 = 0.5 and ¢y = 0.2.

*HE figures 18,19 ***

The dynamic features displayed in the presented figures are compatible
with an intuitive reasoning concerning our growth framework: the long term
values of capital and consumption fall and become less stable as the depre-
ciation rate rises. A higher depreciation rate implies a need to generate
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additional physical capital, and this produces a negative effect over welfare,
given that the marginal utility of capital is negative.

Most importantly, this exercise shows how learning can conduct to non-
linear dynamics in conventional intertemporal growth models.

4 Conclusion

We have developed a series of deterministic models where expectations con-
cerning the next period value of some variable are formed through a learning
process. Five generic models were presented, leading to some overall relevant
conclusions: (i) the steady state of the system under learning is identical
to the perfect foresight steady state; (i7) in each one of the models, learn-
ing introduces endogenous fluctuations, where otherwise we only encounter
stability or instability; (¢4) the found cycles are, in some simple models,
only period 2 cycles, but higher order periodicity is also frequently found -
in various of the introduced models, chaotic motion is observed; (iv) in the
various problems, one verifies that the quality of learning matters; an as-
ymptotic gain variable close to zero implies stability (at the perfect foresight
steady state level), while cyclical motion is a result of a low quality learning
process in which memory loss is relevant (implying perpetual learning). The
main conclusion is that the learning process does not need to be completely
efficient to obtain the goal of a stable result; this can be attained with an
almost efficient learning mechanism.

From a policy analysis standpoint, the notion of an ’almost efficient
learning mechanism’ can be used to mitigate a relevant trade-off: to obtain
the perfect foresight long run equilibrium it is not necessary to fully employ
resources to eliminate any long term learning. The representative agent
just has to be able to identify where the bifurcation point is located; placing
herself immediately to the left of this point, the intended outcome is fulfilled.
In other words, boundedly rational behavior may lead to a fully rational
outcome, with the important advantage that resources needed to collect
and treat information can be saved.

The two economic examples have shown the richness of results expec-
tations under learning may produce. First, an inflation framework allowed
to perceive that a simple stable result under perfect foresight is eventually
transformed in an irregular cycles outcome under adaptive learning; this
implies that if agents learn in order to form inflation expectations and the
quality of learning is poor, then the inflation rate may fluctuate around the
specified target instead of converging to the target (and therefore aggregate
price volatility may be interpreted as a result of the boundedly rational
behavior of economic agents, rather than the result of purely exogenous dis-
turbances). The second example has evaluated the conventional Ramsey
growth model, with capital as an argument of the utility function. In this
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case, the representative agent, that maximizes utility intertemporally, learns
the shadow-price of capital through time. As a result, for some combination
of values, the typical saddle-path stability result of this class of models gives
place to a variety of possible fluctuations regarding the movement over time
of the capital and consumption variables; in this way, one may simulate real
life business cycles that are absent from the growth analysis under a plain
perfect foresight scenario.
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Figure 1 — Model 2.1: local dynamics.
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Figure 2 — Model 2.1: bifurcation diagram.
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Figure 3 — Model 2.2: local dynamics; stability regions in the space of parameters.
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Figure 4 — Model 2.2: local dynamics; trace-determinant relation, for a>1.
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Figure 5 — Model 2.2: local dynamics; trace-determinant relation, for a<l.

a, c Largest LCE
0.85;0.994 0.523
0.95; 0.765 0.232
1.15; 0.387 0.496
1.25; 0.790 0.390

Table 1 — Model 2.2: Largest Lyapunov characteristic exponent

(examples of parameter combinations that imply chaos).
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Figure 6 — Model 2.2: global dynamics in the space of parameters.
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Figure 7 — Model 2.2: bifurcation diagram (a=0.8).
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Figure 8 — Model 2.2: bifurcation diagram (a=1.2).
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Figure 10 — Model 2.3 : bifurcation diagram.
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Figure 12 — Model 2.5: bifurcation diagram (x; o).
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Figure 15 — Model 3.1: bifurcation diagram (a,=0.5; az=0.75).
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Figure 16 — Model 3.1: bifurcation diagram (a,=0.1; az=1.25).
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Figure 17 — Model 3.1: bifurcation diagram (a,=0.5; az=1.25).
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Figure 18 — Model 3.2: bifurcation diagram (bifurcation parameter: ).
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Figure 19 — Model 3.2: long term attractor (k;c,); 6=0.74.



