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Abstract

This paper analyzes the dynamic properties of a standard New Keynesian
monetary policy model when private agents expectations are assumed to
be formed under a learning mechanism. As pointed out in the literature,
learning with decreasing gain estimators tends to lead to convergence to the
rational expectations equilibrium; however, under constant gain, persistent
learning dynamics prevail and nonlinear trajectories of the state variables
may subsist over the long term. By assuming a gain sequence that is asymp-
totically constant, explicit local and global stability results are presented for
two specifications of an optimal monetary policy model. In the first setting,
the central bank believes that private agents possess rational expectations;
while in the second, the bank incorporates the learning rule in its optimal
decisions. In such a framework we find out interesting long term results, in
particular, the presence of endogenous business cycles should be stressed as
an expected outcome.

Keywords: Learning, Optimal monetary policy, Nonlinear dynamics,
Bifurcations and Chaos.
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1 Introduction

A large amount of literature on the formation of macroeconomic expec-
tations through learning has been produced over the last few years. The
motivation for this literature can be found in the seminal paper by Marcet
and Sargent (1989), who questioned the plausibility of the notion of rational
expectations as developed and applied by Muth (1961) and Lucas (1972).

It is well known that under rational expectations economic agents fore-
cast the future without making any systematic errors or, in other words, the
observable forecast error corresponds to a white noise process. Such an as-
sumption is extremely strong, in the sense that it implies agents to have all
the information that is necessary to make forecasts and, furthermore, that
all this information is used optimally. Thus, rational expectations, more
than being a plausible assumption about how households and firms predict
future values of variables which affect their welfare, are rather a powerful
theoretical notion hardly compatible with what agents effectively do in their
every day economic activity.

As an answer to the previous criticism, the learning approach began to be
conceptualized in the late 1980s. It looks much more reasonable a priori to
assume that agents may learn about the economic environment over time —
such that the process may or may not converge to the rational expectations
equilibrium — rather than to impose such equilibrium by simple construc-
tion. Thus, instead of knowing the true process underlying the evolution of
economic aggregates, the agents will choose a rule that is used to predict
future outcomes based on past information. As new information arrives and
becomes available, the learning skills improve and the rule is updated.

A continuing process of learning will then probably lead to an asymp-
totic long run fixed point that may (or may not) differ from the rational
expectations equilibrium (REE); if there is convergence, in the long run
the individual agents will then have gathered all the information needed to
transform the learning rule into an optimal (i.e., rational) rule. This hypo-
thetical convergence to the REE is one of the most relevant properties of
learning schemes, as initially pointed out by Marcet and Sargent (1989), or
as Beeby, Hall and Henry (2001, p.5) remark, the "attraction of learning
then is that it allows agents to make mistakes in the short-run, but not in
the long-run".

There are several ways in which learning can be modeled in the field of
macroeconomics. The one that has received more attention in the literature
is adaptive learning. An extensive survey on macroeconomic issues where
adaptive learning is involved is presented in Evans and Honkapohja (2001).
This form of learning is the most intuitive one and corresponds essentially to
the mechanism mentioned in the previous paragraphs. It is assumed that at
each moment agents formulate forecast functions on the basis of all available
data. As new data becomes available, these functions are revised over time.
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Therefore, full rationality is replaced by a form of bounded rationality. The
parameters in the forecast function have to be estimated, and this estimation
is generally assumed to follow simple econometric techniques. The process
of trial and error that is associated with learning allows, then, to take as
perfectly acceptable the argument that rational expectations are just the
equilibrium or fixed point of some learning dynamic process. In other words,
learning is able to provide an asymptotic justification for the hypothesis of
rational expectations.

Results other than the fixed point associated with full rationality are
obtainable in adaptive learning settings. Such results may include, as in
the two variants presented in this paper, periodic and a-periodic long run
cycles. The eventual presence of these cycles is dependent on the different
possibilities concerning the choice of a specific learning rule, which involves
a gain sequence measuring the sensitivity of estimates to new data. Under
the above reasoning, as new information adds to the existing one, the gain
should be decreasing, shrinking asymptotically towards zero. Nevertheless,
model misspecification or some kind of imperfect knowledge assumption lead
us to accept that such gain sequence may not effectively fall to zero. The
idea of constant gain learning — i.e., of persistent learning dynamics —
is not an unreasonable assumption, and in many settings it can be more
appropriate than a simple complete learning scheme with convergence to
the REE. After all, it is much easier to find evidence of economic processes
where new information is always arriving, thus upgrading permanently the
forecast function, than processes capable of being settled off after a given
amount of data is gathered for good. Therefore, constant gain forms the
crucial element upon which the basic results of our paper are derived.

Most of the learning discussion is related to macroeconomic models where
endogenous variables are subject to stochastic disturbances. On such frame-
works, two points are usually explored. Firstly, we have the issue of equilibria
indeterminacy. As explained in Evans and Honkapohja (2008), indetermi-
nacy implies the existence of a continuum of REE and learning may arise
in this context as a way to select the desirable REE.! The second point is
related to the stability of REE. Errors of forecasting are likely to occur and
the mechanisms used to correct such errors may generate an unstable long
run outcome. Stability under learning is the central point of discussion in
Honkapohja and Mitra (2006), Evans and Honkapohja (2003), Bullard and
Mitra (2002), and many others.

In this paper, we discuss a macroeconomic model under learning follow-
ing some common ground to the existing literature, but we depart from this
ground in two crucial ways. As far as the common ground is concerned, the
first point in common relates to the benchmark model we use to address ex-

!On indeterminacy under learning we refer the reader to Carlstrom and Fuerst (2004),
Honkapohja and Mitra (2004) and Evans and McGough (2005)
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pectations. This is the New Keynesian model with optimal monetary policy,
which has been extensively analyzed (under learning), for instance in Bullard
and Mitra (2002), Andolfatto, Hendry and Moran (2004), Arifovic, Bullard
and Kostyshyna (2007), Preston (2005), Williams (2006), Orphanides and
Williams (2003), Evans and Honkapohja (2003, 2006), Gaspar, Smets and
Vestin (2006), and Schalling (2003), among others. On this regard, the
present study is closer to the work in the three latter references, in the
sense that it concentrates on optimal monetary policy, instead of assuming
monetary policy under ad-hoc interest rate rules, as in Bullard and Mitra
(2002).

The second point of common ground with the existing literature relates
to the assumption of a representative private agent that forms expecta-
tions concerning (mainly) inflation and also the output gap. Although the
assumption of heterogeneous agents is quite appealing when studying sta-
bility /determinacy of equilibria — a theme explored in Evans, Honkapohja
and Marimon (2001), Giannitsarou (2003), Honkapohja and Mitra (2005,
2006) and Guse (2005) — most of the literature assumes homogeneity of
expectations regarding inflation forecasts.

However, our paper departs from the existing literature on expectations
under learning by (i) assuming a purely deterministic setup, and (ii) assum-
ing a constant gain in the learning process. The fully deterministic approach
has the advantage of securing dynamics that have a unique equilibrium or
fixed point. Our main concern is with the long run properties of such equilib-
rium. One will find complex dynamics in optimal monetary policy models,
a result that complements the findings of Grandmont and Laroque (1991),
Bullard (1994), Hommes and Sorger (1998), Sorger (1998) and Schonhofer
(1999). These papers explore and prove the existence of ’complicated equi-
librium trajectories’ under least squares learning in a standard version of the
overlapping generations growth model. The same is to say that the REE
fixed point is replaced by periodic and a-periodic learning equilibria, only
possible due to perpetual learning.

A second departure from the existing literature is the type of gain se-
quence adopted in the paper. Usually, in order to build the forecast func-
tions underlying the learning process, when applying standard econometric
techniques (e.g., least squares) the gain sequence is decreasing and falls as-
ymptotically to zero. In this case, convergence to the REE is achieved in
standard models. On the contrary, we assume that some notion of incom-
plete or imperfect knowledge and/or bounded memory may justify a per-
manent or perpetual process of learning, and therefore long run dynamics
would be characterized by a constant gain learning sequence under which
some non conventional dynamic results are known to arise. Relevant ref-
erences on constant gain learning include Orphanides and Williams (2005,
2007), Honkapohja and Mitra (2003), Barucci (1999, 2000) and Timmer-
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mann (1995).2

The approach in the paper is similar to that of Cellarier (2006) who,
under constant gain adaptive learning, studies a neoclassical growth model.
In that model, boundedly rational households use learning rules to fore-
cast future prices, physical capital holdings and consumption streams. The
analysis focuses on the stability of the steady state. In our model, a similar
stability analysis (including the local search for bifurcation points and the
global investigation of endogenous fluctuations) is undertaken in a scenario
of an optimal monetary policy model under two different settings. Firstly,
we consider an extremely simple inflation dynamic difference equation that
arises from an environment in which private agents learn but the central
bank assumes that agents have perfect foresight. Secondly, we adopt a
theoretical structure in which the central bank incorporates on its optimal
decision framework the information that private agents effectively learn over
time. The quest for bifurcation points in monetary policy models is an is-
sue also discussed in the literature: bifurcations in monetary policy problems
solved under non-optimal interest rate rules in a perfect foresight setting are
explored in Barnett and He (2002, 2004) and Barnett and Duzhak (2008).

The remainder of the paper is organized as follows. Section 2 briefly
presents the benchmark optimal monetary policy model. Section 3 studies
the dynamic behavior of the model under learning, assuming that the mon-
etary authority overlooks such learning process by private agents. Section
4 introduces learning from the start, i.e., the central bank incorporates the
perception that agents do effectively learn. Finally, section 5 concludes.

2 The optimal monetary policy model

The benchmark model to consider is a fully deterministic version of the New
Keynesian monetary policy problem, developed among others in Goodfriend
and King (1997), Clarida, Gali and Gertler (1999) and Woodford (2003).
The state of the economy is given by two dynamic equations. Aggregate
demand is represented by an IS equation, which establishes a relation of
opposite sign between the output gap, x;, and the expected real interest
rate, iy — Eymerq. The output gap is defined as the difference in logs between
effective output and some measure of potential output; the inflation rate,
¢, is simply the variation rate of the price level and, in the real interest rate
expression, i; represents the nominal interest rate and E; is the expectations
operator. The complete IS relation is given by the difference equation that
follows,

xr = —(iy — Eyme1) + Erxeyr, xo given (1)

2The last reference assumes an endogenous gain sequence, i.e., a gain sequence that is
determined by intrinsic economic conditions.
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In equation (1), ¢ > 0 is an elasticity parameter. As one regards, besides
depending on the real interest rate, the contemporaneous value of the output
gap also depends on the expected output gap for the subsequent time period.

On the supply side, we assume a New Keynesian Phillips curve, according
to which there is a positive relation between the contemporaneous values of
inflation and the output gap. The current value of inflation also suffers the
influence of the expected value of inflation for the next period. The equation
is

m = Ay + BBy, 7o given (2)

In equation (2), parameter A € (0,1) is a measure of price flexibility.
The closer this value is to zero, the stronger is the degree of price stickiness
or sluggishness. Constant § € (0, 1) is the intertemporal discount factor.

The monetary authority is supposed to control the value of the nominal
interest rate in order to attain some policy goals. We consider that the
central bank aims at an inflation rate level 7* and at an output gap z* (the
current practice of monetary authorities points to low but positive inflation
and output gap targets). The central bank also attributes different degrees
of relevance to the two policy goals. Parameter a > 0 will represent the
weight of the output gap objective, relatively to the inflation goal, in the
monetary authority objective function. Such objective function is the one
expressed as follows,

+oo
Vo = By {—;Zﬁt (e — )2 + ala — 2*)?] } (3)
t=0

By maximizing Vj subject to (1) and (2), the central bank chooses the
optimal path for the nominal interest rate, that is, the path that allows for
minimizing the errors (i.e., the distance between the values of the endogenous
state variables and the corresponding targets). The optimization problem
yields the following Hamiltonian function (with pf and p] the shadow prices
of the output gap and inflation, respectively),

. 1 . .
H(xtvﬂhztapfap?) = _5 [(Wt - )2 + CL(.iUt — X )2]

+Bpi1p <it - ;Wt + gxt) + Briia (1_67& - AJSt) (4)

First-order optimality conditions come,

H;i=0= ¢fBp{,1 =0 (5)

Bpii1 —pf = —Hy = Bpi —pi = a(wy —2°) — A\piq + Apir (6)
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Bpi —pf = —Hr = Bply —pf =m — 7 +pi — (1=Bpiyr (7)

lim x6'pf = lim mB'pf =0 (transversality condition) (8)
t—+o00 t—+o00

Combining the various optimality conditions, one obtains the dynamic
relation

2

Eiriq = <1 + 23) Ty — a)\ﬁﬂ't + gﬂ* 9)
The dynamics of the monetary policy problem are addressable with the
information given by the Phillips curve in (2) and by equation (9). Two en-
dogenous variables, m; and x, are involved in this system and specific results
will depend on how one approaches expectations. We begin by assuming that
the central bank believes that private agents have rational expectations and
therefore it approaches the system composed by (2) and (9) as if there was
perfect foresight in the economy, i.e., Fixsr1 = x4yr1 and Eymepq = mep1. In
this case, solving the monetary policy system implies considering a linear
system and, therefore, a perfect coincidence exists between local and global
dynamics. In what follows, we will maintain the expectations operators,
keeping in mind that the monetary authority solves the model under perfect
foresight, but that the private economy forms expectations through learning.
Defining the steady state as the point (Z,7) such that T = zy = Eyzi4

and T = my = Eymyq1, one encounters the result (T, ﬁ):(#w*; Tr*).

The system can be presented in matricial form,

A2 x 1-8_«
I+% —a || @— =7 (10)
A T — T*

_A 1
B B

Let J be the Jacobian matrix in system (10). This possesses two eigen-
values, 0 < g1 < 1 and &2 > 1, such that

1—
Eiryi — TBW*
Eymypr — 7

€1,82 =

a(1+6)+)\2$\/[a(1+5)+)\2]2 1

2a0 2a3 B B (11)

Under the assumption that the central bank perceives private expecta-
tions about output and inflation as rational ones, the system is characterized
by a saddle-path stable equilibrium: in the two-dimensional space that de-
fines the system, there is one stable dimension and one unstable dimension.
By computing the eigenvectors associated to each of the eigenvalues, the
following expressions are derived:
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e Stable trajectory:

5(1_51) *_1_18817T

Ty = b\ ™ N\ t (12)
e Unstable trajectory:
ea—1) , eg —1
Ty = —7/6( 2)\ >7T + /B 2)\ Tt (13)

From the analysis of (12) and (13), one observes that the stable trajectory
is negatively sloped, independently of parameter values, while the unstable
path is positively sloped if condition g9 > 1/ is satisfied.

Replacing the output gap expressions in (12) and (13) into the Phillips
curve (2), one finds, respectively,

Etﬂ't—&-l = e1mt + (1 — 81)71'* (14)

Et7rt+1 = EoT¢ — (62 — 1)71'* (15)

Equation (14) is stable (it corresponds to the inflation dynamics when
the stable path is followed); equation (15) is unstable (it corresponds to
the inflation dynamics when the unstable path is followed). Therefore, by
choosing an interest rate derived optimally from the assumed maximization
problem, the monetary authority guarantees that the steady state value of
inflation is the target value that the authority has selected. Nevertheless,
only one of the two possible trajectories is stable; this implies that to guar-
antee a convergence to the steady state inflation rate target, the central
bank has not only to choose an optimal interest rate path; it also has to
select an initial value of the nominal interest rate that puts the system into
the stable arm.

3 Uninformed Central Bank

The central bank intertemporal optimization problem may be solved by as-
suming that agents have rational expectations, as in the previous section.
However, although the central bank may have this belief, private agents
might act differently and use some kind of learning rule to form expecta-
tions concerning inflation. Here, we follow the mechanism of expectations
formation used in Adam, Marcet and Nicolini (2006).

Expectations concerning next period inflation are formed using present
and past information. We specify expectations under learning as Eymi1q =
bymy, where by is an estimator of inflation based on past information. The
mechanism of learning obeys to the rule
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Ti—1

by =bi_1 + oy ( — bt1> , bo given (16)

Tt—2

Variable o, is attached to the notion of gain sequence. We now briefly
explain how the gain sequence is approached, and then turn to the dynamic
properties of the monetary policy problem under learning.

3.1 The gain sequence

Variable o; € [0, 1] is defined as a gain variable or gain sequence. The most
commonly used gain sequence is a decreasing sequence such that o441 =
o¢/(1 + o¢), oo given. Under this dynamic relation, as the representative
agent collects information, the value of o; falls asymptotically towards zero
in such a way that rational expectations / perfect foresight holds in the long
run. The idea of gain is better understood by defining variable o, = 1/0y,
ay > 1. For this, ayy1 = oy + 1, i.e., the representative agent improves her
prediction at each time moment, endlessly, as new information arrives and
the individual effectively learns.

Here, we modify the gain sequence in order to allow for long term con-
stant gain learning (above zero). We assume that agents have finite memory
and therefore they learn in each period but they also lose some of the already
stored information. Therefore, we modify the above equation in order to in-
clude a loss term in the gain expression. Considering that the loss is subject
to decreasing marginal returns, we take the expression ay1 = az+1—46 In o,
with 0 > 0 a parameter that measures the extent of memory loss. The equa-
tion regarding variable o; now comes

(o7
14+ 04+ dolnoy

The implications of the inclusion of the loss term are significant. First,
for the decreasing gain case 6 = 0, equation (17) has a unique steady state
point, that is stable: @ = 0. For § > 0, the steady state @° = 0 continues to
exist but is no longer stable. Another steady state point arises, 0 < 7 < 1,
which is stable: the gain sequence converges to this value in the long run.
Such value corresponds to the nontrivial solution of & = o4 = 0441, which is
o = exp(—1/9).

The value of parameter § must be bounded from above given that the
condition ;11 < 1 has to be satisfied. Noticing that the maximum of o441 is
obtained when o; = 1/4, then it is straightforward to impose the boundary
§ < exp(1). Figures 1 and 2 present phase diagrams for both cases.® Figure 1
respects to the case in which no loss term is introduced in the gain sequence,

Oi41 = (17)

3All the figures presented in this paper, with exception of figure 3, are drawn using
IDMC software (interactive Dynamical Model Calculator). This is a free software program
available at www.dss.uniud.it/nonlinear, and copyright of Marji Lines and Alfredo Medio.
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while figure 2 takes in consideration such loss element; to illustrate this case,
we take 0 = 1 (a value that implies @ = 0.3679).

FEK figures 1, 2

Note the similarities and the differences between figures 1 and 2. For
oy = 0 and o4 = 1, o441 assumes the same values in both cases. The
introduction of memory loss in the learning process increases the concavity
of the temporal relation of o, making it possible to arrive to a second,
stable, steady state. This second steady state will be located as much to the
right (higher values of @) as the larger is the value of 6.

In practice, the above arguments furnish a rationale for the consideration
of long term constant gain learning.

3.2 Local stability

Let us recover the optimal monetary policy problem. Under the specified
setting, the monetary authority sets the interest rate in an optimal trajec-
tory, which has two arms, one stable, (14), and the other unstable, (15).
Although these equations arise as the fruit of a central bank assumption of
perfect foresight, the private economy effectively learns, and therefore the

estimator b; may be presented as by = Etzi’z“ =e1+(1- 51)% (if the stable
trajectory is followed) and b; = E’%“ =9 — (g9 — 1)% (if the unstable
trajectory is followed). Replacing these expressions in (16), one arrives to

the following systems of equations,

(1—gy)m*
Ot+1 (%*Ei)Jr(l*UtJrl)(l*Ei)% i=1,2 (18)
Zt+1 = T¢

Tt+1 —

Variable z; is defined as the inflation rate in period t — 1. To synthe-
size, we must stress that system (18) characterizes the admissible inflation
rate paths when (i) the central bank adopts an optimal interest rate rule,
assuming that private agents are fully rational regarding their expectations;
(ii) agents predict inflation rates under a learning scheme.

Each system has a unique steady state point 7 = 7*; this is the same
steady state for inflation one finds in the exclusively perfect foresight case.
In the vicinity of this steady state we can study the stability of the system.
Linearization in the steady state vicinity leads to the matricial presentation

[Wt+1_7r* ] _ [ 1-9)- % 2% } .{”t—”*], i=1,2 (19)

Zt+1—71'* 1 0 zt—7r*

A first relevant result is straightforward to obtain from (19),
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Proposition 1 In the optimal monetary policy problem in which the mone-
tary authority overlooks the evidence that the private economy forms expec-
tations through learning, the following local stability results are obtained:

Case 1. Under (14),

e [f o< 2(31__;1), the system is stable;

o If 7= 2(31__;11), the system undergoes a flip bifurcation;

o If 7> 2(31__;11), the system is saddle-path stable.

Case 2. Under (15),

o If 7 <eg—1, the system is stable;
o If 7 =¢e9— 1, the system undergoes a Neimark-Sacker bifurcation;

o If 7 >e9—1, the system is unstable.

Proof. Trace and determinant of the Jacobian matrix in system (19)
are Tr(J)=(1-7)— 1—351- and Det(J) = —l_isi. Stability conditions of two-
dimensional discrete time systems are the following: 1—T7(J)+ Det(J) > 0,
1+Tr(J)+ Det(J) > 0 and 1 — Det(J) > 0. These expressions correspond,
in the present case, respectively too >0, 2 —7 — 2% >0and 1+ 1—551- >
0. For i = 1, the first and the third inequalities are satisfied; the second
requires o < 2(31__;11) , as specified in the proposition. If the opposite condition
holds, then the system is saddle-path stable [because condition 1+ Tr(J) +
Det(J) > 0 is violated]. In the point in which 1+ Tr(J) + Det(J) = 0, the
system undergoes a flip bifurcation. 4

For ¢ = 2, the first and the second stability conditions are satisfied, while
the third requires & < g9 — 1. If @ > 3 — 1, then Det(J) > 1, and therefore
the system falls in the instability region. When @ = ea—1 (i.e., Det(J) = 1),
the eigenvalues of the Jacobian matrix turn into two complex conjugate
values with modulus equal to 1, and the system undergoes a Neimark-Sacker
bifurcation m

The result in proposition 1 is presentable graphically. If we combine
the trace and determinant expressions of the Jacobian matrix in (19), the
equation Det(J) = Tr(J) — (1 — @) is obtained. This relation is depicted
graphically in figure 3.

k ok * ﬁgure 9 kK k

*See Medio and Lines (2001), chapter 5, for a detailed discussion of the conditions
characterizing the presence of local bifurcations.

10
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Figure 3 represents the simple inflation dynamics learning framework
in the trace-determinant diagram. The three lines that form the inverted
triangle are bifurcation lines. The area inside the triangle corresponds to
the region of stability (two eigenvalues inside the unit circle). The bold line
relates to the location of system (19) in terms of the trace-determinant rela-
tion. Note that we can separate this line into two segments: for Det(J) < 0,
we are over the stable arm (14), given that the determinant of the Jaco-
bian matrix is negative as long as we consider a negative 1 — g; value.
For Det(J) < 0, trajectory (15) is taken, since the determinant is positive
for |ea] > 1. The dynamic results are the consequence of a trace-determinant
equation that is parallel to 1 — T'r(J) + Det(J) = 0, and that locates to the
left of this line in the represented diagram.

Especially relevant is the fact that, in any of the cases in proposition 1,
stability holds for low values of @ (near zero). This means that the learning
process does not need to be fully efficient (i.e., to converge to the REE) to
lead to the stable outcome of rational expectations. Some memory loss is
admissible, without this implying a departure from the benchmark result
(in the case, this is a convergence to the inflation rate target set by the
central bank). When learning inefficiency passes a given threshold (the ones
referred in the proposition), then inflation stability is lost, and inflation does
not converge any longer to the specified target. This result is economically
relevant: it says that agents do not need to be completely efficient when
learning, but they need to be almost efficient in order to be possible to
attain the desired policy result.

3.3 Global dynamics

Local dynamics indicate that we are in the presence of points of bifurcation.
When considering any of the equations (14) and (15), the introduction of
the learning mechanism induces the presence of a change in the qualitative
nature of the dynamics as one varies the long run value of the gain variable.
Recall that such value is directly related to the strength of memory loss in
the gain sequence (i.e., with the value of parameter 0). Given the nonlinear
nature of the first equation in system (18), one might expect such shifts in
the topological properties of the model to produce endogenous fluctuations.
In this sub-section, we take some reasonable parameter values to explore
the global properties of the system. It is found that as one passes from a
local area of stability to an area of saddle-path stability or instability, this is
translated, in terms of global dynamics, as the transition from a fixed-point
steady state into areas of periodic and a-periodic cycles that exist in a given
area before instability sets in.

To address global dynamics, we take the loss parameter § as the bifurca-
tion parameter, because the former represents the major innovation in the
learning process considered in this paper. Remember that & = exp(—1/9),

11
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and therefore there is a one to one correspondence between ¢ and . Rela-
tively to the other parameters of the model, we consider values that make
sense for a quarterly analysis. First, the inflation rate target is set at
7 = 0.005 (prices should rise 0.5% a quarter). Second, we consider that the
concern of the central bank with the output gap goal is 25% of the concern
with inflation (@ = 0.25). Third, the values for the price stickiness parameter
and the discount factor are taken from Rotemberg and Woodford (1997) and
Woodford (2003), chapter 5: A = 0.024 and 8 = 0.99 (this discount factor
corresponds to a gross discount rate of 1.01%). Recall that the eigenvalues
e1 and g9 are the ones in (11); hence, for the assumed parameter specifica-
tions, one has €; = 0.9576 and €2 = 1.0549. In the graphical presentation
that follows we assume the initial values mg = zp = 0.01 (the initial value of
oy is irrelevant as long as o4 € (0,1)).

The graphical analysis undertaken here involves presenting bifurcation
diagrams, associating the inflation rate with the parameter §, for both values
of ¢; (figures 4 and 5). We observe that for low values of the memory loss
(i.e., for low values of the long term gain variable), a stable fixed point is
obtained. This confirms that if we are near the REE long term outcome,
then the system is stable. As we depart from such outcome, a two-period
cycle becomes dominant and regions of a-periodic motion will also arise.
These, however, are relatively small. Chaotic motion is formed, in both
cases, through a period doubling process.

K figures 4,5 FFF

The diagrams in figures 4 and 5 can be analyzed together with the local
dynamics results in proposition 1. For €1 = 0.9576, the system is stable if
the steady state value of oy is lower than 0.0415, which is obtained when
0 < 0.3143. A bifurcation occurs at § = 0.3143, and this can be confirmed
by observing figure 4. To the right of this point, local dynamics led to
a result of saddle-path stability, that we verify to be a region of cyclical
motion. In what concerns the second case, €5 = 1.0549, the Neimark-Sacker
bifurcation occurs when & = 0.0549, i.e., § = 0.3446. To the left of this
point we have stability, and to the right instability prevails (locally) and
cycles are evidenced (globally).

To highlight the presence of chaotic motion in optimal monetary policy
under asymptotic constant gain learning, we choose a value for ¢ that in
figure 5 clearly corresponds to a point of a-periodic cyclicity. For this we
draw the long term series of inflation (figure 6). The value of the memory
loss parameter is § = 0.97 (which corresponds to @ = 0.3567) and we assume
g2 = 1.0549.

FEF figure 61
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The dynamics of learning in optimal monetary policy

The presence of chaos can be confirmed by computing Lyapunov char-
acteristic exponents (LCEs). LCEs are a measure of sensitive dependence
on initial conditions (SDIC) or divergence of nearby orbits. In a two di-
mensional system as ours, there exist two LCEs; chaotic motion (SDIC) is
revealed if one of the characteristic exponents is above zero, what is effec-
tively true: for the case €1 = 0.9576 and § = 1.375, the computed LCEs
are LCFE; = —0.63 and LCFE; = 0.12; for €5 = 1.0549 and § = 0.97, the
LCEs come LCE; = —0.52 and LCE5 = 0.08.> The positive exponent indi-
cates that two inflation trajectories starting from points close together will
follow completely distinct paths, implying the chaotic result that we have
characterized.

The policy implication that one takes from the previous graphical il-
lustration is that although the central bank pursues an optimal policy and
it aims at price stability, if the private agents form expectations through
learning and the monetary authority does not take into account such learn-
ing process, then endogenous cycles may be generated meaning that inflation
is not stable, although it fluctuates around a stable value. This inflation fluc-
tuation process requires that as agents learn they also lose past information
when estimating future values of key variables (in the case, just inflation).

4 Informed Central Bank

In this section, we sophisticate the model by assuming that the monetary
authority is fully aware of the learning mechanism adopted by the private
economy in order to predict future values of inflation and of the output gap.
We also assume that the learning process is similar for each one of these two
variables. The only difference concerns the gain sequence in the sense that
it does not need to be exactly the same for both processes (more specifically,

we may consider different loss parameters 6 and 0™).
By solving the optimal problem, we have arrived at the system
{ Brov = (1435 ) o0 = ymi+ 3 (20)

Eimiy = %Wt - %fb‘t

Considering learning, we now take Fixii1 = bfxy and Eymey; = by,
with b7 and b} the estimators of the output gap and of the inflation rate
respectively. Learning rules are,

Pt (220 ) 6 gven (21)

Tt—2

Tt—1

P =0bi_ + o0y <

- bf1> , by given (22)
Tt—2

’The LCEs are computed also by resorting to the iDMC software.
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The dynamics of learning in optimal monetary policy

Equation (22) is identical to equation (16), while equation (21) encloses
a similar learning process for the output gap. The gain variable p, assumes
values in the interval [0,1] and it may be subject to a dynamic process similar
to the one characterized in the previous section.

Noticing that b7 = E%:“ = <1 + %) — A My AT and BT = Eimipn _

afB x¢ a Tt Tt

% — %7%7 we arrive to the following system of equations,
_ i
T+l = T7(B0;)—al¢/A
Ti+1 = 1/ﬁ—g®t1“t//\ (23)
me41 = Tt
R+l — Tt

System (23) is built using the following definitions: m; = z;_1, 2t = 71,
O = (1 o) + dora (1-8%), Ty = (1— ) (32 -2%) -

Fy1 (% - (1 + %))

Solving T = x441 = ot = my and T = Tyy1 = T = 2z¢, one computes
a unique steady state output gap/inflation pair, which is identical to the
one already obtained for the case without learning and the case of a simple
inflation rate equation dynamics: (Z,7)= < 18 m*

Local dynamics are addressable through the linearization of system (23)
around the steady state. The system is

"L’t+1—f .’L‘t—f
7Tt+1—7T7 —J 7Tt—7T7 (24)
migy1 — my — T
Zty1 — T zp — "
_ _ _ 1-8)a—
—3(1-2) - - - B
with J = _%(1_N) i\ﬂ‘i‘ (1_0)

0
Ha-o+iv+5fa-n S0 -is
lu-p-Sa-9-7 & o

0 0 0
1 0 0

Explicit local results are difficult to obtain given the dimension of matrix
J and consequently the cumbersome expressions that result from the corre-
sponding eigenvalues. Thus, we focus the stability analysis on a numerical
evaluation. Take the benchmark values in the previous section, a = 0.25,
A =0.024 and 8 = 0.99. From a global perspective, one encounters nonlin-
ear results. We present a detail of a bifurcation diagram for inflation with &
the bifurcation parameter (figure 7). We let 7 = 0.75 and the values of the
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other involved parameters are the ones already used. The selected initial
values are xg = mg = mg9 = 29 = 0.01. It is presented a small region in
which chaotic motion is evidenced. We also display the time series of infla-
tion, given a combination of parameters generating irregular cycles (figure
8).

FEE figures 7, §FFF

The presence of chaotic motion is once again addressed through the
computation of LCEs. In this case, we have a four dimensional system.
As in the two dimensional case, the presence of a unique positive LCE is
sufficient to conclude about the presence of divergence of nearby orbits,
i.e., the presence of chaotic trajectories. Table 1 presents the Lyapunov
exponents for four different long run values of the gain variable o;. The
values assumed for the various parameters are the same as before, and, as
in figures 7 and 8, we assume @ = 0.75.

o LCEs Dynamics
0.585 | —0.13,-0,18,—0.52, —2.47 | Period 6
0.595 | —0.01,—0.16,—0.54, —2.63 | Period 12
0.605 | 0.07,—0.13,—0.56, —2.78 Chaos
0.615 | —0.44,—0.47,—1.34,—1.37 | Period 2
Table 1 - Lyapunov exponents for different values of @.

Table 1 displays the LCEs of the system for values of & close to each
other. Although close, these values produce different dynamics (as one ob-
serves in figure 7). The table shows a unique positive LCE, in the only of
the selected circumstances in which chaotic motion prevails.

5 Conclusion

The paper addresses the dynamics of optimal monetary policy models under
adaptive learning. It is known from the literature that this type of learning
mechanism in the formation of expectations may lead to nonlinear dynamics
and even chaos, but these results have rarely been illustrated in the litera-
ture, which has generally focused on indeterminacy and stability issues in
problems where stochastic components are included.

In this paper, we have analyzed the nonlinear dynamics in a determinis-
tic version of the New Keynesian model with optimal monetary policy. Two
versions were approached. The first one assumed a rather simple inflation
dynamic process where private agents learn but the Central bank does not
take this into account, while the second considers a full learning process
where expectations about inflation and the output gap are modeled under
learning with Central Bank awareness. In both cases, bifurcation points were
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found, separating regions of stability from saddle-path stability /instability.
A global approach to such systems allowed us to perceive that the bifurca-
tions separate regions in terms of their stability, from stable fixed points,
to periodic cyclical motion, and ending up in chaotic dynamics. Dynamics
with period 2 cycles is a predominant result but regions of higher periodicity
cycles and complete a-periodicity are also revealed. Particularly important
is that stability is found solely for low values of the gain variable (i.e., near
the REE), meaning that a stable fixed point outcome is directly associated
with a high quality learning process.

The obtained results seem to corroborate the idea, which is pervasive
in the literature, that endogenous cycles in adaptive learning settings can
only arise under constant gain. We have also presented a rationale for long
term constant gain: a decreasing marginal loss component allows to obtain
a stable fixed point value for the gain process that is located somewhere
between 0 and 1.
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Figure 1 — Phase diagram for o; (5=0).
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Figure 3 — Local inflation dynamics under learning.
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Figure 4 — Bifurcation diagram (7,6); €=0.9576.
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