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Abstract

This paper is concerned with the following problem. In a bounded
rational game where players cannot be as super-rational as in Kalai
and Leher (1993), are there simple adaptive heuristics or rules that
can be used in order to secure convergence to Nash equilibria, or con-
vergence only to a larger set designated by correlated equilibria? Are
there games with uncoupled deterministic dynamics in discrete time
that converge to Nash equilibrium or not? Young (2008) argues that
if an adaptive learning rule follows three conditions – (i) it is uncou-
pled, (ii) each player’s choice of action depends solely on the frequency
distribution of past play, and (iii) each player’s choice of action, condi-
tional on the state, is deterministic – no such rule leads the players’
behavior to converge to Nash equilibrium. In this paper we present a
counterexample, showing that there are simple adaptive rules that se-
cure convergence, in fact fast convergence, in a fully deterministic and
uncoupled game. We used the Cournot model with nonlinear costs
and incomplete information for this purpose and also illustrate that
this convergence can be achieved with or without any coordination of
the players actions.

Keywords: Uncoupled deterministic dynamics, Nash equilibrium,
bounded learning, convergence.

1 Introduction

The particular problem of "learning" in game theory – or the dynamic
process through which the players’ actions may (or may not) converge to
the equilibria of the game – has a long history in economics; in fact, we
can say that the former is almost as long as the very history of game theory
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itself. Already in the early 1950s we �nd seminal contributions to the sub-
ject. Brown (1951) presented a dynamic adjustment now widely known as
"�ctitious play" to be taken as a learning process for computing the equilib-
ria of games, while Hannan (1957) and Blackwell (1956) put forward speci�c
proposals to evaluate the success of convergence of various learning rules to
the equilibria.
However, despite such a long history, it seems no exaggeration at all to

argue that it was essentially over the last ten years or so that the learning
problem took over as one of the crucial elements of modern game theory.
The literature has grown and �ourished so much that it is totally impos-
sible to acknowledge much of its large volume in a necessarily short space,
which includes a signi�cant number of advanced textbooks – see e.g. Fu-
denberg and Levine (1998), Rubinstein (1998), Young (2004), Sandholm
(2008), Camerer (2003) and Cesa-Bianchi and Lugosi (2006) – and more
than a hundred papers, see two recent excellent surveys by Hart (2005) and
Sandholm (2007).
This paper is concerned with the following problem. In a bounded ratio-

nal game where players cannot be as super-rational as in Kalai and Leher
(1993) – where they were found to be unbounded in what they can remem-
ber, compute, or anticipate – are there simple adaptive heuristics or rules
that can be used in order to secure convergence to Nash equilibria, or con-
vergence only to a larger set designated by correlated equilibria? Do games
with uncoupled deterministic dynamics in discrete time converge to Nash
equilibrium or not? Does the dynamics in fact converge to, or does it just
come close to the Nash equilibria? By uncoupled dynamics, following Hart
and Mas-Colell (2003), we mean a game in which the strategy may depend
on the actions of the other players but not on their preferences.
This issue has been extensively discussed since the late 1990s. Foster

and Vohra (1997,1998), Fudenberg and Levine (1998), Hart and Mas-Colell
(2000, 2003) proved that by constructing a calibrated procedure for fore-
casting opponents’ play convergence of time-averaged behavior to the set
of correlated equilibria can be achieved, independently of the game consid-
ered. Notice that we are mentioning correlated equilibria, not the set of
Nash equilibria which is generally speaking a strict subset of the set of the
former equilibria. It was Foster and Young (2003) who tackled the problem
of convergence to the set of Nash equilibria and showed that the dynamics
are most of the time close to but are not Nash-convergent. The state of the
problem, as we currently have it, can be clearly highlighted by a quotation
from a very recent paper by Foster and Young (2006):

"We have repeatedly said that interactive trial and error
learning cause behaviors to come close to Nash equilibrium a
high proportion of the time. Why not just say that behaviors
converge to Nash equilibrium? Because typically they do not
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converge. In fact, there are very severe limits to what can be
achieved if one insists on convergence to Nash equilibrium. To
be speci�c, suppose that a learning rule has the following proper-
ties: (i) it is uncoupled, (ii) each player’s choice of action depends
solely on the frequency distribution of past play (as in �ctitious
play), and (iii) each player’s choice of action, conditional on the
state, is deterministic. Hart and Mas-Colell (2003) show that for
a large class of games, no such rule causes the players’ period-
by-period behavior to converge to Nash equilibrium."(p.7)

Despite the problem being spelled out above with such strong clarity
and conviction, from a mere intuitive point of view one may raise some
doubts about such generality of the no convergence result to Nash equilibria
if certain conditions are considered: if the game has a stationary structure,
if one accepts that the game is allowed to be played for a long period of time,
and, �nally, if players are allowed to learn from the past experience, even if
only in a bounded fashion. In fact, the problem of possible no convergence to
the Nash equilibrium was already acknowledged by Shapley (1964), but there
is a feeling that if the game has an internal dynamic structure that is ergodic
(either fully deterministic or stochastically ergodic), it must be subject to
some level of prediction or control when the players can use information
from past outcomes in order to decide what strategy should be followed.
For example, this was exactly what happened with the recent paper by
Germano and Lugosi (2007), who showed that the no convergence result of
Foster and Young (2003) could be easily reversed if the players were allowed
to add experimentation to their learning procedures. Notice that in their
approach a rationale of bounded rational players is still adopted, keeping the
game far away from the strong rationality hypothesis of Kalai and Lehrer
(1993), but the crucial point in their paper is that there is a simple and
adaptive process – bounded rational learning – that does in fact deliver
convergence to the Nash equilibrium.
But the counterpoint presented by Germano and Lugosi can also be

found in many other recent papers. For example, it is well known in game
theory that the strategy pair sequence produced by following a gradient
ascent algorithm may never converge, see Owen (1995). However Singh,
Kearns and Mansour (2000) showed that in general stochastic games if both
players follow an In�nitesimal Gradient Ascent (IGA) learning process, then
their strategies will converge to a Nash equilibrium or the average payo�s
over time will converge in the limit to the expected payo�s of a Nash equi-
librium. Their �rst theorem is extremely interesting because it states one of
the �rst convergence results for a rational multiagent learning algorithm,
although the convergence was still somewhat week. This weakness was
quickly overcome by Bowling and Veloso (2002), who showed that if the
learning process followed a WoLF principle ("Win or Learn Fast") we will
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obtain a stronger notion of convergence, i.e., players will always converge
to a Nash equilibrium. Successful convergence to the Nash equilibrium can
also be found in the learning approach proposed by Zinkevich (2003), under
the name of Generalized In�nitesimal Gradient Ascent (GIGA), and one
�nds in Leslie and Collins (2006) an explanation of why bounded rational
players might learn to play Nash equilibrium strategies without having any
knowledge of the game, or even that they are playing a game.
In this paper we continue on this route of bounded rational learning

and the convergence to the Nash equilibrium. In particular, we take the
three conditions presented in the above quotation by Young as a delimita-
tion criteria for whether the Nash equilibrium can be learned or not, and
put one of the most simple games that has been used in game theory (the
Cournot model) to the test. We provide a counterexample that clearly vi-
olates those three general conditions above. We take a standard Cournot
model in strategic form, with pretty conventional convex cost curves that
can be found in any undergraduate microeconomics textbook, and we add
bounded learning in order to overcome the extremely high computational re-
quirements needed to achieve the Nash equilibrium of the game. The game
is fully deterministic and clearly satis�es the three conditions above: (i) it
is uncoupled, because the strategies depend only upon the other player’s
actions (not upon the opponents pro�t function); (ii) each player’s choice
of action depends solely on the past play, and (iii) each player’s choice of
action is entirely deterministic.
We will show that, under these conditions, a simple adaptive learning

rule going back in time as far as ��1� concerning information on the actions
taken (output in this case), will deliver very fast convergence to the Nash
equilibrium, even in a case where we have multiple Nash equilibria. That is,
if the game starts to be played relatively near any one of the various Nash
equilibria, and players are bounded rational – so that they are not able
to compute straight away the level of output correspondent to any of those
equilibria – but take decisions for the next period by using information on
the output produced at � and ��1 by both �rms, the dynamics converge very
fast to that particular Nash equilibrium. This occurs if both players adopt
similar learning procedures, but can also be achieved if just one of the players
corrects his mistakes by incorporating in his strategy past information on
his own actions and the actions of his rival.
Another interesting point in this bounded rational game consists in the

fact that even very simple rules of thumb can be very powerful rules to lead
to optimal decision making, because they may render optimal decisions to be
achievable by trial and error, in a situation where without them such optimal
decisions were hardly feasible, unless a player is equipped with super-rational
powers. Such a point was �rstly highlighted by Baumol and Quandt (1964)
in one of the �rst papers applying the concepts of bounded rationality to
economics:
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"It is easy to jump to the conclusion that the widespread use
of rules of thumb is good evidence of sloppy workmanship on
the part of business management. We shall argue [...] on the
contrary, rules of thumb are among the more e�cient pieces of
equipment of optimal decision making."(p. 23).

The paper is organized as follows. In section two the Cournot game
with nonlinear costs and incomplete information is presented. Section three
introduces the bounded rational process adopted by players in order to over-
come the extreme complex computations which are required to play Nash in
a one shot game. Section four analyses with some rigor the local and global
dynamics associated with the bounded rational game. Section �ve discusses
the simple time-delayed adaptive process to secure convergence to the Nash
equilibrium, and the �nal section presents some concluding remarks.

2 The Cournot game

Take the standard Cournot model of an oligopolistic market (where every-
thing is already known in the literature): 2 �rms, homogeneous product,
complete information, and constant average costs. Assume that now there
is incomplete information and that average production costs are nonlinear.
The assumption of incomplete information is necessary in our exercise in
order to arti�cially increase the complexity of the game, such that it would
require super levels of rationality from the players to come up with a set
of action pro�les that would produce the Nash equilibrium in a one shot
game. Our fundamental question is whether the Nash—Bayesian Equilib-
rium (NBE) of such an extremely complex game is learnable or not if played
by bounded rational players. Standard results in the literature show that
the NBE would not learnable under these conditions. Consider for instance
the remark by Cox and Walker (1998, p. 143)

”But what if marginal costs are not constant? If they are in-
creasing, the reaction functions still look qualitatively as they do
in Fig.1 and therefore adaptive learning models continue to pre-
dict convergence to the Nash equilibrium. If marginal costs are
decreasing, but not decreasing too rapidly (as compared with the
demand function), the reaction functions again cross as in Fig.1,
and adaptive learning models again predict convergence to the
Nash equilibrium. But when one or both �rms’ marginal costs
are declining too rapidly [���] several speci�c adaptive models, in-
cluding Cournot’s best-reply model [���] all predict that play will
not converge to the interior Nash equilibrium but will converge
instead to one of the boundary Nash equilibria.”
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In this paper, we show the opposite: even in a model with an extremely
complicated structure, the NBE can be learned over time and the bound-
ary Nash equilibria can be easily ruled out. To prove this we use simple
time-delayed feedback learning rules, namely we consider that one single
player can render the convergence to the Nash equilibria possible if he uses
information on the past actions of play by himself and by the other player,
or that convergence can be achieved by both players if they use the same
learning process or if there is some form of coordination in learning .
To develop analytically our Cournot game, we begin by presenting some

fundamental de�nitions:

De�nition 1 Normal form game. A �nite n-person normal (or strate-
gic) form game is a tuple (���� �) where

• � is a �nite set of � players, indexed by 	;

• � = �1× ���×��� where �� is a �nite set of actions available to player
	. Each vector 
(
1� ��� 
�) � � is called an action pro�le;

• �(�1� ��� ��) where �� : � 7� R is a real-valued utility (or payo�)
function for player 	.

De�nition 2 Cournot oligopoly game is a strategic game among �rms
where competition is based on quantity adjustment, and includes a set of
Players The �rms.
Actions Each �rm’s set of actions is the set of its possible positive prodution
levels.
Preferences Each �rm’s preferences are represented by the maximization of
its pro�t function.

De�nition 3 Nash equilibrium of a strategic game. The action pro�le

� in a normal form game is a Nash equilibrium if, for every player 	 and
every action 
�, according to the preferences of player 	, 
� is at least as good
as the action pro�le (
�� 
���) in which player 	 chooses 
� while every other
player � chooses 
�� . Equivalently, for every player 	, in terms of payo�s we
have that

��(

�) � ��(
�� 


�
��) for every action 
� of player 	

where �� is a payo� function that represents player 	’s preferences.

The major ingredients of the model are trivial and follow any textbook
treatment. The market demand function is linear and decreasing

� = 
 (�) =

½

� � (��) , � � 
��
0 , otherwise

� (1)
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with � =
P

�� the industry total output, 	 = 1� 2� ���� and 
� � � 0�For
simplicity assume only 	 = 1� 2. The pro�t functions for each �rm (��) are
given by

�1(�1� �2) =

½
(
� � (�1 + �2))�1 � �1�1 , �1 + �2 � 
��
��1�1 , otherwise

�2(�1� �2) =

½
(
� � (�1 + �2))�2 � �2�2 , �1 + �2 � 
��
��2�2 , otherwise

A Nash equilibrium in this Cournot game is an action pro�le �� with
the property that no �rm 	 can be better o� by choosing an action di�erent
from ��� , given that every other player � chooses �

�
� .(

��1 = argmax�1 �1(�1� �2)

��2 = argmax�2 �2(�1� �2)�
(2)

so the best response of each �rm is given by

�1(�2) =

½
1
2�(
� ��2 � �1) , �2 � (
� �1) ��
0 , otherwise

�2(�1) =

½
1
2�(
� ��1 � �2) , �2 � (
� �2) ��
0 , otherwise

This game has a Nash equilibrium that exists and is unique and, due to
elementary level of the problem, no proof is required here. We now intro-
duce incomplete information into the model and present a Nash-Bayesian
equilibrium.
Denote the probability assigned by the belief of type �� of player 	 to state

� by Pr(�|��). Denote also the action taken by each type �� of each player
� by 
(�� ��). Player �’s signal in state � is � �(�), so his action in state � is

(�� � �(�)). For each state �, denote by 
̂(�) the action pro�le in which each
player � chooses the action 
(�� � �(�)). Then the expected payo� of type ��
of player 	 when she chooses the action 
� is

P
���Pr(�|��)��((
�� 
̂��(�))�)�

De�nition 4 A Nash equilibrium of a Bayesian game is a Nash equi-
librium of the strategic game (with von Neuman—Morgenstern preferences)
de�ned as follows.
Players: The set of all pairs (	� ��) where 	 is a player in the Bayesian game
and �� is one of the signals that 	 may receive.
Actions: The set of actions of each player (	� ��) is the set of actions of
player 	 in the Bayesian game.
Preferences: The Bernoulli payo� function of each player (	� ��) is given byP

���Pr(�|��)��((
�� 
̂��(�))�)
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In the speci�c case of our system, we assume that �rm 2 (F2) has com-
plete information about both average costs (�1� �2). Assume also that �rm
1 (F1) knows its own cost structure (�1) but is not sure about the average
costs of �rm 2, believing that �rm 2 may have a lower cost structure (��2 )
with probability �, and a higher cost structure (�	2 ) with probability 1� �,

�2 =

½
��2 , with probability �
�	2 , with probability 1� �

and assume also that F2 is unsure about whether F1 knows or not its
true cost structure.
A Bayesian game that models the situation is de�ned as follows, involving

players, states, actions, signals, beliefs, and payo� functions. The players
are F1 and F2. The states are given by the following set {�0��0� �1��1}�
corresponding to the states, respectively: �2 = ��2 but F1 is unsure about F2
cost structure, �2 = �	2 but F1 is unsure about F2 cost structure, �2 = ��2
and F1 knows this with certainty, �2 = �	2 and F1 knows this with certainty.
Each �rm’s set of actions is the set of its possible outputs (�1� �2 � 0). As far
as the signals are concerned, we have that F1 gets one of the signals [0� ���],
and her signal function �1 satis�es �1(�0) = �1(�0) = 0, �1(�1) = �, and
�1(�1) = �. F2 gets the signal [���] and her signal function �2 satis�es
�2(�0) = �2(�1) = � and �2(�0) = �2(�1) = �� On the side of beliefs,
we assume that F1 type-0 assigns probability � to state �0 and probability
1 � � to state �0� F1 type-� assigns probability 1 to state �1� F1 type-�
assigns probability 1 to state �. As far as �rm 2 is concerned, F2 type-�
assigns probability � to state �1 and probability 1�� to state �0, F2 type-�
assigns probability � to state �1 and probability 1 � � to state �0. The
payo� functions are the �rms’ Bernoulli payo�s which are given by their
pro�ts (�1
2); if the actions chosen are (�1� �2), then F1 pro�ts are �1 and
for F2 are �2 in states �0 and �1, and ��2 in states �0 and �1.
Mathematically we can represent this game with incomplete informa-

tion by a 5D system. Denote �0� ��� �� the production levels of F1 for each
of the three type signals [0� ���] � and ���� �

�
	 the corresponding levels for

F2 for each of the two signals [���]. A Nash equilibrium is a pro�le
(��0� ��� � �

�
� � �

�
�� �

�
	) for which �

�
0� �

�
� � �

�
� are best responses to �

�
�� �

�
	 , and �

�
�� �

�
	

are best responses to ��0� ��� � �
�
� .

�
�
�0
[�(� (�0 + ��)� �)�0 + (1� �)(� (�0 + �	)� �)�0]

�
�
��
(� (�� + ��)� �)��

�
�
��
(� (�� + �	)� �)��

�
�
��
[(1� �) (� (�0 + ��)� ��)�� + �(� (�� + ��)� ��)��]

�
�
��
[(1� �) (� (�0 + �	)� �	)�	 + �(� (�� + �	)� �	)�	 ]
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As previously mentioned, it has been shown (Cox and Walker,1998) that
the Cournot-Bayesian game has the following general properties with con-
stant average costs: (i) there exists a Bayesian—Nash equilibrium if the
market demand is linear; (ii) the equilibrium can be learned if the demand
is linear; and (iii) if costs are not constant, there is multiple equilibria and
learnability is not veri�ed. The third result is the most important one for us
here because of the crucial importance that the cost structure imparts upon
the type of stability in the Cournot game. What happens to these three
results if besides costs being not constant, they have a nonlinear shape as
we �nd in any intermediate microeconomics textbook?
Following the arguments of Cox and Walker, we should consider a fast

declining cost structure. In particular, we assume that costs should decline
faster than the market demand � (�) = 
� � (��) �The following parameter
values for the market demand are considered 
 = 5�58� � = 2� while the faster
declining average cost function is given by

�(��) = ��� �� ln (��) (3)

with � = 1�2 for the three types of cost structures (�1� ��� �	) and �
should assume di�erent values in order to di�erentiate the di�erent cost
structures

� =

��
�
1�8� for the ��2 cost structure
2�0, for the �1 cost structure
2�2� for the �	2 cost structure

In Figure 1 we present the market demand curve and the three cost struc-
tures that we have been discussing. The min of �(��) for {�(��)� � (�1) � �(�	)} =
{0�66� 0�6� 0�54} �

The Cournot game is a rather simple game leading to rather simple
results if the market demand is linear and if the cost structures are also
linear – besides obeying the conditions highlighted by Cox and Walker
(1998) – even in an incomplete information game in a Bayesian framework.
However, when we introduce non linear cost structures into the Bayesian
framework, the model becomes extremely complicated. In order to just
present some �avour of what one may encounter by such an adventure let
us simplify the model by reducing its dimension. Let us assume that � = 0
– F2 does indeed know that F1 does not know its true cost structure – so
that the best response functions are given by

9



0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

qi

c i, P
(Q

)

cH
c1

cL

Figure 1: Fast declining cost functions and market demand function

��1 =

½

� 2��1 � � [��� + (1� �)�	 ]� �1 , ��� + (1� �)�	 � (
� �1) ��
0 , otherwise

��� =

½
(
� ��1 � 2��� � ��) , �1 � (
� ��) ��
0 , otherwise

(4)

��	 =

½
(
� ��1 � 2��	 � �	) , �1 � (
� �	) ��
0 , otherwise

Given the parameter values above presented, these three best response
functions lead to a Bayesian-Nash equilibria characterized by eight equilib-
rium points not extremely far away from each other in the three dimensional
space (see next section for further details). If one further restricts the com-
plexity of the game, by assuming for example that �rm 1 knows that the
true cost structure of �rm 2 is �	 (� = 0), the system is reduced to two best
response functions leading to four Bayesian-Nash equilibrium points (NBE).
Now imagine that there is no coordination among the players and also that
they are not equipped with the super rational powers to perform all the
computations and move directly towards one of the equilibrium points. In
this case, it seems questionable that any one of the NBE points would be
reached as a simple movement in a one shot game.
But even if one accepts that the agents are endowed with such powerful

tools as to be able to perform all the necessary computations and get some
coordination on the movement to a particular �xed point, the problem is not
so simple because for each individual equilibrium there is a speci�c payo�
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which may favour one or the other �rm. If both players choose di�erent
equilibrium points this leads to a repeated game that can be modelled as
a dynamic process. In the next section we present a dynamic adjustment
process which overcomes these di�culties and shows two fundamental char-
acteristics: (i) the players are bounded rational in the sense that they do try
to maximize pro�ts but are unable to perform all the necessary computa-
tions to jump straight to a speci�c equilibrium point of the game; (ii) they
increase/decrease the level of production in response to positive/negative
marginal pro�ts; (iii) a very simple learning procedure if adopted by both
players (or by just one player) secures convergence to Nash equilibria if the
initial conditions of the game are not very far from the equilibrium points
under consideration.

3 Bounded learning dynamics

The adaptive process that the two Cournot �rms follow in this game has its
origins in the the paper by Baumol and Quandt (1964). In the Appendix
A of that paper ("Learning Rules of Thumb", the authors argue that a rule
of thumb of the type 

+1 = 

 +  (��
��

)� where 
 is the price level,
� stands for pro�ts, and  is an adjustment parameter, and � is a time
index, as a rule of thumb is "among the more e�cient pieces of equipment
of optimal decision making" in the maximization of pro�ts by rational �rms
under incomplete information. Notice that if at time � prices are changing
but pro�ts remain constant, one gets a �xed point 

+1 = 

 = 
�.
But our bounded rational approach to learning is also close to the IGA

(In�nitesimal Gradient Ascent) process developed by Singh et al. (2000)
and its variants: "WoLF" Win or Learn Fast process by Bowling and Veloso
(2002) and the GIGA (Generalized In�nitesimal Gradient Ascent) learning
process by Zinkevich (2003). For example, in the WolF process applied in a
two-player, two-action, iterated matrix games, it was shown that a bounded
rational dynamic process would lead to Nash equilibria. For any two pair
of strategies (!� "), the expected payo�s for the row (#) and the column
(�) players are given by $�(!

�� "�) and $�(!
�� "�)�Each player selects an

action from {1� 2} in the matrix game and let ! � [0� 1] be a strategy for
the row player (#), where ! corresponds to the probability the player selects
the �rst action and 1 � ! is the probability the player selects the second
action. Similarly, " is a strategy for the column player. Considering the
joint strategy (!� "), each player will move its strategy in the direction of
the current gradient with some adjustment or step parameter %� Then the
strategies of the  th iteration are given by (!�� "�)� and these strategies will
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evolve according to the adaptive rule

!�+1 = !� + %&��
'$�(!

�� "�)

'!�

"�+1 = "� + %&��
'$�(!

�� "�)

'"�

where & represents the variable learning parameter with &��
� � [&min� &max] �
0�Notice that, once again, if the second term on the right hand side of both
equations goes to zero we end up with a stationary point in the game. The
interesting issue here is that if & is allowed to change — increase & if you are
loosing, decrease it otherwise – such a learning process guarantees converge
with probability one to the set of Nash equilibria.
We follow a similar procedure in our deterministic Cournot game. Both

players know that in order to maximize pro�ts they have to take into account
their best response functions, given respectively by ��1(
)

��1(
)
(�1(�)� �2(�)) and

��2(
)
��2(
)

(�1(�)� �2(�)). They also know that at the Nash equilibrium the two
best responses have to be equal to zero, but while these are negative or
positive their pro�ts must be increasing or declining over time. Therefore,
when marginal pro�ts are positive, leading to an increase in total pro�ts,
each �rm has an incentive to increase production, and to reduce production
whenever the marginal pro�ts are negative. That is, �rms react locally to
marginal pro�ts because they can only adjust gradually towards the Nash
equilibrium due to the large complexity of the game.
This intuition can be described by the following functions

�1 (�+ 1) =

�
1 + !1

μ
'�1(�)

'�1(�)
(�1(�)� �2(�))

¶¸
�1(�)

(5)

�2 (�+ 1) =

�
1 + !2

μ
'�2(�)

'�2(�)
(�1(�)� �2(�))

¶¸
�2(�)

where !� represents the speed of adjustment to marginal pro�ts. Notice that
if ���(
)���(
)

= 0�then �� (�+ 1) = �� (�) = ��� and we get the Nash equilibrium.
As we will show in the next section, this simple and bounded adaptive

process converges to a state close to the Nash equilibrium, cycling around
such �xed point, but by itself the full convergence is not secured. However,
in a subsequent section we show that if both �rms use information from
their past actions (going back in time no further then just one period),
the convergence is secured and at a very fast rate. Moreover, if one single
player wants to guarantee convergence to the Nash equilibrium, while the
other player ignores such objective, he can achieve that by using one period
lagged information on his actions and on the actions of his rival. Such a
simple backward looking information added to the adaptive rule does in
fact guarantee successful and fast convergence to the Nash equilibrium.
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4 Local and global dynamic analysis

The learning process described by a system like (5) feeded with a nonlinear
cost curve as in (3) leads to extremely complicated dynamics. In order
to understand the nature of such complexity we need �rst to present a
detailed discussion of the local and global dynamics of our model. For this
purpose, we will use some powerful tools from bifurcation analysis. While
varying one parameter, 
, one may encounter codim 1 bifurcations of �xed
points (fold or limit point, �ip or period-doubling and Neimark-Sacker),
i.e., critical parameter values where the stability of the �xed point changes.
Encountering such bifurcation, one may use the formulas for the normal
form coe�cients derived via the center manifold reduction to analyze the
bifurcation (see [?]).
The Center Manifold Theorem helps to reduce the dimensionality of

the phase space to the dimensionality of the center manifold which in the
bifurcation point is tangentially to the eigenspace of the marginal modes
of the linear stability analysis. Basically, the center manifold theorem says,
that, the dynamics can be projected onto the center manifold without loosing
any signi�cant aspect of the dynamics. Moreover, the dynamics projected
onto the center manifold can be transformed into the so-called normal forms
by a nonlinear transformation of the phase space variables and the normal
form coe�cients completely describe the codim one bifurcations.
The Limit Point (LP) and Period Doubling (PD) curve for period 1-

cycles are computed by Gauss-Newton continuation algorithm applied to
minimally extended de�ning systems, by using a Matlab package, named
cl_ matcont_m, which was developed by Govaerts et al [?]. When a
limit point or period doubling point is detected on a curve of �xed points,
then the processing of these points includes the computation of the normal
form coe�cients, giving the complete description of these bifurcations.

4.1 Two-dimensional model

Our two dimensional case corresponds the complete information version of
the Cournot game, the simplest version that can be presented for the model,
leading nevertheless to not so simple dynamics of the play as we will show
here. In the system (4), it corresponds to set � = 0, that is, �rm 1 knows
that the cost structure of �rm 2 is �	 . In this case the model is given by(

�1 (�+ 1) = �1 (�) + !1�1 (�) (
� 2��1 (�)� ��� (�))� (��1 (�)�� ln(�1 (�))))

�� (�+ 1) = �� (�) + !2�� (�) (
� 2��� (�)� ��1 (�)� ((���� (�)�� ln(��(�))))
�

(6)
where we use the following parameter calibration: !1 = 0�7� !2 = 0�7� � =
2�0� � = 1�2� � = 2� �� = 2�2 and we let the control parameter 
 to vary in
the interval [4�0� 8�05].

13
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Figure 2: Limit point bifurcation.

Several �xed points, namely 7, 8 or 9, where 2, 3 or 4 are Nash equilibria,
can be obtained by applying some numerical algorithm in order to solve the
nonlinear system

(�1 (�+ 1) � �� (�+ 1)) = (�1 (�) � �� (�)) �

The �xed points that are not Nash equilibria, have no matematical interest,
since they are not belonging to the map domain. Initially, for 
 = 4� there
are 2 �xed points, all unstable, and by varying the parameter 
 we obtain
the 3
� �xed point at 
 = 4�03932� and �nally, for any 
 � 4�03932 there are
always 4 Nash equilibria. This can be explained by the occurrence of a limit
point (saddle-node or fold) bifurcation that take place at the critical value

�1 = 4�03932 of the parameter 
� By computing the normal form coe�cient
of LP, that is, (�� = 1�06363 � 0, we obtain that when 
 � 4�03932
then there are two �xed points: one stable node, (��1� ���), and one unstable
saddle,

³
�
0
1� �

0
�

´
; when 
 = 4�03932, there is one critical �xed point with

eigenvalue 1� and when 
 ) 4�03932� then the saddle and the node collide
and disappear. The di�erent scenarios for the existence of Nash equilibria
are illustrated in Figure 2.
The �xed point occurring due the limit point bifurcation, is the only

one stable, will be denoted by (��1� ���) and represents the nontrivial posi-
tive Nash equilibrium that we will study in this paper. By further vary-
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ing the parameter 
 the Nash equilibrium loss its stability by a super-
critical period doubling bifurcation that takes place at the critical value

�2 = 4�88334. Thus, (��1� ���) is stable for 4�03932 ) 
 ) 4�88334 and un-
stable for 
 � 4�88334. At the critical parameter value 
 = 4�88334, the
�xed point has multiplier � = �1� By verifying the nondegeneracy condi-
tions ([?], [?]), namely computing the normal form coe�cient of PD, that is,
(�� = 1�140270*+ 001 6= 0� we conclude that a unique and stable period-
two cycle bifurcates from (��1� ���) = (0�52987� 0�47097) for 
 � 4�88334. The
fate of this period-two cycle can be traced further. It can be veri�ed numer-
ically that this cycle losses stability via another �ip bifurcation given rise to
a stable period-four cycle, that bifurcates again generating a stable period 8
cycle, and so on generating an in�nite sequence of bifurcations values, that
�nally results in an chaotic attractor at the Misiurewicz point, that is for

 = 5�5285� The chaotic attractor permanence for any values of 
 in the
interval [5�5285� 5�59] and if we increase 
 slightly from 5�59 the attractor
disappears in a boundary crises bifurcation. Moreover, for 
 = 6�60094, the
unstable Nash equilibrium,(��1� ���) = (0�80843� 0�74757), becomes a neutral
saddle (NS), that is, a saddle with zero sum of eigenvalues which is as at-
tracting as repelling and that �nally bifurcates in a totally unstable �xed
point, for 
 = 8�03414, as can be seen in Figure 3.
The saddle �xed point obtained due the limit point bifurcation,

³
�
0
1� �

0
�

´
=

(0�66254� 0�10519), will continue unstable until one of its eigenvalues will
cross the unitary circle for 
 = 4�679651, generating a unstable period dou-
bling bifurcation that will diverge to in�nity after few time steps.
Figure 3 summarize the dynamical behavior of the two signi�cant Nash

equilibria, (��1� ���) and
³
�
0
1� �

0
�

´
. The computation of this equilibrium curves

gives the dependence of an equilibrium on the parameter.
� The problem
of computing the equilibrium curve is a speci�c case of the general �nite-
dimensional continuation problem. When the control parameter crosses the
critical value corresponding to a limit point bifurcation, two �xed points
of the map collide and disappear and when the control parameter crosses
the critical value corresponding to a period doubling bifurcation a cycle of
period 2 bifurcates from the �xed point.
In the particular case that we will use in the next section (where we

apply a delayed feedback control technique), that is for !1 = 0�7;!2 = 0�7;
� = 2�0; � = 1�2; � = 2; �� = 2�2; and 
 = 5�58; the two-dimensional map
takes the more simple form(

�1 (�+ 1) = �1 (�) + 0�7�1 (�) (5�58� 6�0�1 (�)� 2�0�� (�) + 1�2 ln(�1 (�)))
�� (�+ 1) = �� (�) + 0�7�� (�) (5�58� 6�2�� (�)� 2�0�1 (�) + 1�2 ln(�� (�)))

�

and by solving the nonlinear system (�1 (�+ 1) � �� (�+ 1)) = (�� (�) � �1 (�))
we obtain the following 4 Nash equilibria, where 3 are unstable sources with
two eigenvalues with modulus greater than one and one is a saddle:
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Figure 3: Continuation curve

(
(�1� ��) = (0�01023� 0�01025) � (�1� ��) = (0�05113� 0�85265)

(��1� ���) = (0�64636� 0�58906) � (�
0
1� �

0
�) = (0�88742� 0�05606)

The asymptotic behavior of the system is given by the chaotic attractor
presented in Figure 4. As we can easily observe the time series for both
actions q1 and qH do not show full convergence to the Nash equilibrium
point (��1� ���) = (0�64636� 0�58906) � neither do they exhibit divergence from
that point, gravitating instead around this Nash equilibrium.
We obtain the values of the equilibria and proceed to the local stability

analysis of each one of the �xed points by using advanced numerical algo-
rithms available in Matlab software, since there is no possibility to obtain
speci�c formulas in this case.

4.2 Three-dimensional model

The three dimensional case corresponds to the system (4), where for sim-
plicity it assumed that F2 does indeed know that F1 does not know its true
cost structure ( � = 0 ).

In this case, we use the following parameter calibration: !1 = 0�7;!2 =
0�7;!3 = 0�7; � = 2�0; � = 1�2; � = 2; �� = 2�2; �� = 1�8� and we let the
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Figure 4: Chaotic attractor and time series for 
 = 5�58�

control parameter 
 to vary in the interval [3�9� 6].The three-dimensional
model takes the form

����
���

�1 (�+ 1) = �1 (�) + 0�7�1 (�) (5�58� 6�1 (�)� 1�6�� (�)� 0�4�� (�) + 1�2 ln(�1 (�)))
�� (�+ 1) = �� (�) + 0�7�� (�) (5�58� 6�2�� (�)� 2�1 (�) + 1�2 ln(�� (�)))
�� (�+ 1) = �� (�) + 0�7�� (�) (5�58� 5�8�� (�)� 2�1 (�) + 1�2 ln(�� (�)))

�

Several �xed points, namely 25, 26 or 27, where 6, 7 or 8 are Nash
equilibria,can be obtain by applying some numerical algorithm to solve the
nonlinear systems

(�1 (�+ 1) � �� (�+ 1) � �� (�+ 1)) = (�1 (�) � �� (�) � �� (�)) �

The �xed points that are not Nash equilibria, have no matematical interest,
since they are not belonging to the map domain. Initially, for 
 = 3�9� there
are 6 �xed points, all unstable, and by varying the parameter 
 we can
obtain the 7
� �xed point for 
 = 3�99103� For any 
 � 3�99103 there are
always 8 Nash equilibria. This is explained by the occurrence of a limit point
(LP) bifurcation that take place at the critical value 
�1 = 3�99103 of the
control parameter 
. By computing the normal form coe�cient of the limit
point bifurcation, that is, (�� = 7�830251* � 001 � 0, we obtain that for

 � 3�991039 there are two �xed points, one stable node,(��1� ���� �

�
� ), and one

unstable saddle,
³
�
0
1� �

0
�� �

0
�

´
, at 
 = 3�99103, there is one tangential critical
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Figure 5: Continuation curve

�xed point with eigenvalue 1� and for 
 ) 3�99103� the saddle and the node
points collide and disappear. The di�erent scenarios for the existence of
Nash equilibria are illustrated Figure 5.
The �xed point occurring due the limit point bifurcation is the only one

stable, represents the positive signi�cative Nash equilibrium that we will
study in this paper and will be denoted by (��1� ���� �

�
� ). By further vary-

ing the parameter 
 the Nash equilibrium loss its stability by a supercrit-
ical period doubling (�ip) bifurcation that takes place at the critical value

�2 = 4�859617. Thus, (��1� ���� �

�
� ) is stable for 3�99103 ) 
 ) 4�85961 and

unstable for 
 � 4�85961. At the critical parameter value 
 = 4�85961,
the �xed point has multiplier � = �1� By verifying the nondegeneracy
conditions ([?], [?]), namely the normal form coe�cient of PD, that is,
(�� = 7�73667 6= 0� we conclude that a unique and stable period-two cy-
cle bifurcates from (��1� ���� �

�
� ) = (0�49060� 0�48582� 0�54195) for 
 � 4�88334.

The fate of this period-two cycle can be traced further. It can be veri�ed
numerically that this cycle losses stability via another �ip bifurcation given
rise to a stable period-four cycle, that bifurcates again generating a stable
period 8 cycle, and so on generating an in�nite sequence of bifurcations val-
ues, that �nally results in an chaotic attractor after the Misiurewicz point,
that is for 
 = 5�514� The chaotic attractor permanence for any values of 
 in
the interval [5�514� 5�59] and if we increase 
 slightly from 5�59 the attractor
disappears in a boundary crises bifurcation. Moreover, for 
 = 5�38771 ,
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Figure 6: Chaotic attractor and time series for 
 = 5�58

the unstable Nash equilibrium,(��1� ���� �
�
� ) = (0�58283� 0�57329� 0�63349), be-

comes a neutral saddle (NS), that is, a saddle with zero sum of eigenvalues
which is as attracting as repelling and �nally bifurcates in an totally unsta-
ble �xed point, for 
 = 5�87829 , as can be seen in Figure 5. Finally a new
neutral saddle take place at (0�78522� 0�76911� 0�84052) for 
 = 6�65396�

The saddle �xed point obtained by the limit point bifurcation,
³
�
0
1� �

0
�� �

0
�

´
,

becomes a neutral saddle (0�10574� 0�63890� 0�70264) for 
 = 4�71030 and
�nally for 
 = 4�76266 one of its eigenvalues will cross the unitary circle, gen-
erating a unstable period doubling bifurcation that will diverge to in�nity
after few time steps.
Figure 5 summarize the dynamical behavior of the two signi�cant Nash

equilibria, (��1� ���� �
�
� ) and

³
�
0
1� �

0
�� �

0
�

´
. The computation of this equilibrium

curves gives the dependence of an equilibrium on the parameter.
� The prob-
lem of computing the equilibrium curve is a speci�c case of the general �nite-
dimensional continuation problem. When the control parameter crosses the
critical value corresponding to a limit point bifurcation, two �xed points
of the map collide and disappear and when the control parameter crosses
the critical value corresponding to a period doubling bifurcation a cycle of
period 2 bifurcates from the �xed point.
We �x the control parameter 
 to assume the value 
 = 5�58 for which

the asymptotic behavior of the system is given by the chaotic attractor
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presented in Figure 6. Now, by solving the nonlinear system

5�58� 6�1 (�)� 1�6�� (�)� 0�4�� (�) + 1�2 ln(�1 (�))) = 0
5�58� 6�2�� (�)� 2�1 (�) + 1�2 ln(�� (�))) = 0
5�58� 5�8�� (�)� 2�1 (�) + 1�2 ln(�� (�))) = 0

we obtain the following 8 Nash equilibria, where 5 are unstable sources and
3 are saddle �xed points :

(�1� ��� ��) = (0�0408� 0�0108� 0�9337) � (�1� ��� ��) = (0�0102� 0�0102� 0�0102)

(��1� ���� �
�
� ) = (0�6148� 0�6040� 0�6659) �

³
�
0
1� �

0
�� �

0
�

´
= (0�0584� 0�8496� 0�9260)

(�1� ��� ��) = (0�0138� 0�8681� 0�0102) � (�1� ��� ��) = (0�8878� 0�0561� 0�0547)

(�1� ��� ��) = (0�8522� 0�4850� 0�0505) � (�1� ��� ��) = (0�6829� 0�0359� 0�6314)

The values of the equilibria and the study of the local stability of each
one of the �xed points was obtained by using advanced numerical algorithms
available in Matlab software. The Nash equilibrium (��1� ���� �

�
� ) represents

the main �xed point in term of stabilization by delay feedback control, since
is the most relevant from dyamical point of view, as has been showed above.

5 Convergence to the Nash equilibrium

As we saw in the previous section, in both the two and three dimensional
cases, the dynamics of play do not show full convergence to the Nash equilib-
rium points, neither do they diverge from such points. In fact, they gravitate
around those points. We can exploit this property of the dynamics to force
the system to move towards the Nash equilibrium by a small perturbation
to the initial bounded adaptive process. All that is required is that either
both players make use of current and of a one period lagged information
about their own actions – or just one player can do so by using informa-
tion concerning his own actions and the actions of his rival – in order to
smooth his reaction to the ups and downs of the outputs of both �rms over
time. That is, player 	 can achieve convergence by using an adaptive real
coe�cient 
 for that purpose, such that 
 (��(�)� ��(�� 1)) turns out to be
the perturbation required to secure convergence to the Nash equilibrium.
This method follows Pyragas [27] who proposed a process called delayed

feedback control (DFC) in which the control input is fed by the di�erence
between the current state and the delayed state. The delay time is deter-
mined as the period of the unstable periodic orbit to be stabilized. Hence,
the control input vanishes when the unstable periodic orbit is stabilized. In
addition, this method requires no preliminary calculation of the unstable
periodic orbit.
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However, it has been reported that discrete-time DFC has a limitation
[33]. That is, DFC never stabilizes an unstable �xed point of a chaotic
discrete-time system (continuous-time system), if the Jacobian matrix of
the linearized system around the unstable �xed point has an odd number of
real eigenvalues greater than unity. This property is called the odd number
limitation.
To overcome the odd number property, several methods have been pro-

posed (see for example, [23], [34], [17], between others). In this paper we
closely follows the necessary and su�cient condition for stabilizability of
discrete-time systems via delayed feedback control presented by Zhu and
Tian (Theorem 2 in [37]).
For the nonlinear system

� (�+ 1) = � (� (�) � � (�)) � � (�) � R� � (�) � R�� � : R� ×R� R
�

let �� � R� be a �xed point, that is a solution to the system �� = � (��� 0) �
We denote by � = +�� (�

�� 0) and � = +�� (�
�� 0) the Jacobian matrices of

the map � in order to the variables � and ��
The linearized system of the map � around �� is given by

, (�+ 1) = �, (�) +�� (�) (7)

where , (�) = � (�)� �� and

� (�) = 
 (, (�)� , (�� 1)) (8)

Theorem 5 Assume (���) is controllable. There exists delayed feedback
control (8) such that the closed-loop system composed by (7) and (8) is as-
ymptotically stable if and only if

0 ) det (-� ��) ) 2�+1

where -� is the identity matrix of order ��

An important question that lies at the heart of control using state space
models is whether we can steer the state via the control input to certain
locations in the state space, or if the system is controllable. We recall that
the pair (���) is controllable if

( =
£
� �� �2� ������1�

¤
has full rank � (that is det(() 6= 0)� where � is the order of the matrix ��

21



We also have to specify that all these results are presented for matrices
� and � given in the following controllable canonical form

�� =

�
�������	

0 1 0 � � � 0 0
0 0 1 � � � 0 0
0 0 0 � � � 0 0
...
...
...
. . .

...
...

0 0 0 � � � 0 1

1 
2 
3 � � � 
��1 
�



��������
� �� =

�
�������	

0
0
0
...
0
1



��������

where 
�� 	 = 1� ���� � are the coe�cients of the characteristic polynomial of
initial Jacobian matrix � (for more details see [7]). The above model has
a special form and any completely controllable system can be expressed in
this way.

5.1 Case 1: Two-dimensional model

Let us now concentrate on the unstable chaotic Nash equilibrium

(��1� �
�
�) = (0�64636� 0�58906) �

with the goal to stabilize it by delay feedback control. In Figure 4 we
showed the chaotic attractor and the time series associated with the variable
�1 when the parameter 
 = 5�58� We will demonstrate that the irregular
behavior of the play can be easily changed and forced to converge to the
Nash equilibrium point.
The Jacobian matrix of the system calculated for the Nash equilibrium

is given by

� = +�� (�
�
1� �

�
�� 0) =

� �0�87474 �0�90491
�0�82469 �0�71654

¸

and the canonical form of the linearized closed-loop system is

�� =

�
0 1

0�11948 �1�59128
¸
� �� = +�� (�

�
1� �

�
�� 0) =

�
0
1

¸
�

It is easy to check that the pair (��� ��) is controllable since the matrix

[�� ����] =

�
0 1
1 �1�59128

¸

has maximum rank # = 2� We can also obtain immediately that the eigen-
values of matrix ��, are given by �1 = �1�66312� �2 = 0�07184 which means
that we are in the presence of the odd number limitation (if we are not in
the presence of the odd number limitation the system can be controlled by
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simple one-period feedback delay control). This implies that we can not
stabilize the �xed point by the simpler delay feedback control, but since

0 ) det (-2 ��) =

¯̄̄
¯ 1�87474 0�90491
0�82469 1�71654

¯̄̄
¯ =

= det (-2 ���) =

¯̄̄
¯ 0 1
0�11948 �1�59128

¯̄̄
¯ = 2�4718 ) 23 = 8

we can apply the necessary and su�cient condition of stabilizability from
[37] in order to obtain DFC for the Nash equilibrium point in our model.
In what follows we have to determine the expression of the DFC that

stabilize (��1� ���) = (0�64636� 0�58906) � We choose some . = 3�5 such that

2�4718 = det (-2 ���) ) . ) 23 = 8

holds. We compute

� = 1� �

r
.

2
= �0�32288

and

" = 1� 2 det (-2 ���)

.
= �0�41246

in order to obtain the following polynomial

/ (0) = (0� �)� (0� ") = (0+ 0�32288)2 (0+ 0�41246) =

= 03 + 1�058202 + 0�37060+ 0�04300

= 03 + /20
2 + /10

1 + /0

Now, we can write down the DFC rule, that is


� = �
�X
�=�

(
� + /�) � � = 1� 2� ���� �


1 = � (
1 + 
2 + /1 + /2) = 0�043


2 = � (
2 + /2) = 0�53308

� (�) =
�X
�=1


� [�� (�)� �� (�� 1)] = 
1,1 (�) + 
2,2 (�) =

= 0�043 (�1 (�)� �1 (�� 1)) + 0�53308 (�� (�)� �� (�� 1))

Finally the closed loop controlled system has the form��
�

�1 (�+ 1) = �1 (�) + 0�7�1 (�) (5�58� 6�0�1 (�)� 2�0�� (�) + 1�2 ln(�1 (�)))+
+0�043 (�1 (�)� �1 (�� 1)) + 0�53308 (�� (�)� �� (�� 1))

�� (�+ 1) = �� (�) + 0�7�� (�) (5�58� 6�2�� (�)� 2�0�1 (�) + 1�2 ln(�� (�)))
�
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Figure 7: Learning to converge to Nash equilibium.

Since stabilization is guaranteed only in a neighborhood of the �xed
point, we adopt the following small control law proposed by Pyragas

�� (�) =

½
� (�) if � (�) ) 1
0 otherwise

where 1 is a small positive number. Figure 7 shows the stabilization of the
Nash equilibrium point (for the variable �1) and the convergence to zero
of the control input term. The delay feedback control was switched on at
� = 70 and it takes around 10 time steps to steer down at the �xed point
value (��1 = 0�64636).
We see that controllability and convergence to the Nash equilibrium is

a black and white issue: a model either is completely controllable or is not.
Clearly, to know that something is uncontrollable is a valuable piece of in-
formation. However, to know that something is controllable really tells us
nothing about the degree of controllability, i.e., about the di�culty that
might be involved in achieving a certain objective. If a system is not com-
pletely controllable, it can be decomposed into a controllable and a com-
pletely uncontrollable subsystem.
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5.2 Case 2: Three-dimensional model

We have the following linearization for the original system in the neighbor-
hood of the Nash equilibrium point (��1� ���� �

�
� ) = (0�61488� 0�60409� 0�66591)

, (�+ 1) = �, (�) +�� (�)

� =

�
	 �0�7425147 �0�1721676 �0�6886705
�0�8457374 �0�7817862 0
�0�9322852 0 �0�8636272



� � � = �� =

�
	 10
0



�

, (�) =

�
	 �1 (�)� ��1

�� (�)� ���
�� (�)� ���



� � � (�) = [
1,1 (�) + 
2,2 (�) + 
3,3 (�)]

and now we consider the canonical decomposition for the matrix �� denoted
by ��

�� =

�
	 0 1 0

0 0 1
0�1263625 �1�109269 �2�387928



�

It is easy to check that (��� ��) is controllable, since

( = [�� ���� �2���] =

�
	 0 0 1
0 1 �2�38792
1 �2�38792 4�59293



�

is triangular and has full rank 3.
We compute the eigenvalues of the matrix �� and we obtain that �1 =

�1�68518� �2 = 0�09410 and �3 = �0�79684 which means that we are in
the presence of the odd number limitation (one real eigenvalue of modulus
greater than one). This implies that we can not stabilize the �xed point by
the simple delay feedback control, but since

0 ) det (-3 ���) =

¯̄̄
¯̄̄ 1 �1 0

0 1 �1
�0�12636 1�10926 3�38792

¯̄̄
¯̄̄ = 4�3708 ) 23 = 8

we can apply the necessary and su�cient condition of stabilizability from
[37] in order to obtain DFC.
In what follows we have to determine the expression of the DFC that

stabilize (��1� ���� �
�
� ) � We choose some . = 5 such that

4�3708 = det (-3 ���) ) . ) 24 = 16

holds and we compute

� = 1� �

r
.

2
= �0�35721
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and

" = 1� 2 det (-3 ���)

.
= �0�74832

in order to get a stable polynomial de�ned as

/ (0) = (0� �)� (0� ") = (0+ 0�35721)3 (0+ 0�74832) =

= 04 + 1�820003 + 1�184702 + 0�332030+ 0�03410

= 04 + /30
3 + /20

2 + /10
1 + /0

Finally, we can obtain the DFC


� = �
�X
�=�

(
� + /�) � � = 1� 2� ���� �


1 = � (
1 + 
2 + 
3 + /1 + /2 + /3) = 0�034105


2 = � (
2 + 
3 + /2 + /3) = 0�49250


3 = � (
3 + /3) = 0�56793

� (�) = 
1,1 (�) + 
2,2 (�) + 
3,3 (�) =

= 
1 (�1 (�)� �1 (�� 1)) + 
2 (�� (�)� �� (�� 1)) + 
� (�3 (�)� �� (�� 1)) =
= 0�03410 (�1 (�)� �1 (�� 1)) + 0�49250 (�� (�)� �� (�� 1)) +

+0�56793 (�� (�)� �� (�� 1))

and the closed loop controlled system takes the form����������
���������

�1 (�+ 1) = �1 (�) + 0�7�1 (�) (5�58� 6�1 (�)� 1�6�� (�)� 0�4�� (�)
+1�2 ln(�1 (�))) + 0�03410 (�1 (�)� �1 (�� 1)) + 0�49250 (�� (�)� �� (�� 1))
+0�56793 (�� (�)� �� (�� 1))
�� (�+ 1) = �� (�) + 0�7�� (�) (5�58� 6�2�� (�)� 2�1 (�) + 1�2 ln(�� (�)))
�� (�+ 1) = �� (�) + 0�7�� (�) (5�58� 5�8�� (�)� 2�1 (�) + 1�2 ln(�� (�)))

�

Since stabilization is guaranteed only in a neighborhood of the �xed
point, we adopt the following small control law proposed by Pyragas

�� (�) =

½
� (�) if � (�) ) 1
0 otherwise

where 1 is a small positive number. Figure 8 shows the stabilization of the
Nash equilibrium point (for the variable �1 and ��). The delay feedback
control was switched on at � = 70 and it takes less than 10 time steps to
steer down at the �xed point value (��1� ���� �

�
� ) = (0�61488� 0�60409� 0�66591).
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Figure 8: Learning to converge to Nash equilibium.

6 Concluding remarks

In this paper we provided a counterexample to the well accepted results
concerning the lack of convergence of simple adaptive rules to Nash equilibria
in a certain class of games. As it is widely known, it has been argued that if
a simple adaptive rule obeys three basic conditions – (i) it is uncoupled, (ii)
each player’s choice of action depends solely on the frequency distribution
of past play (as in �ctitious play), and (iii) each player’s choice of action,
conditional on the state, is deterministic – there seems to exist no such
rule that renders the actions of the players to secure, period by period,
convergence to the Nash equilibrium.
This argument has been substantiated in some recent very in�uential

papers, even if the former may seem to go against common intuition. Build-
ing upon this basic intuition, we take the three conditions presented as a
delimitation criteria for whether the Nash equilibrium can be learned or not
by using simple adaptive rules, and put one of the most simple games that
has been used in game theory (the Cournot model) to the test. We pro-
vide a counterexample that clearly violates those three general conditions
above; the game is uncoupled, because the strategies depend only upon the
other player’s actions (not upon the opponents pro�t function); each player’s
choice of action depends solely on the past play, and each player’s choice of
action is entirely deterministic. Nevertheless, convergence to the Nash equi-
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libria is secured and a very fast rate, and in order to do so players have to
go back in time collecting information about their own actions no further
than at �� 1.
Finally, we should add a note of caution. We claim no generality in the

results presented here. It is a mere counterexample, but as a conjecture we
reason that if the dynamics of any game are ergodic, we expect similar kind
of results to apply in these circumstances.
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