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Abstract

A local dynamic analysis, in the neighborhood of the steady state, is de-
veloped for one and two-sector endogenous growth models. The problem
differs from the conventionally assumed growth setups because one consid-
ers that expectations concerning the next period value of the control variable
(consumption) are formed through adaptive learning. In such scenario, the
found stability conditions reveal that convergence to the unique steady state
point is feasible if a minimum requirement regarding the quality of learn-
ing in the long run equilibrium is fulfilled. Therefore, stability of growth
under learning is dependent on the efficiency with which expectations are
generated.

Keywords: Endogenous growth, Adaptive learning, Stability analysis.

JEL classification: 041, C62, D83



Stability under Learning: the Endogenous Growth Problem

1 Introduction

When assessing the formation of expectations, a reasonable approach is to
consider that some representative agent has to learn about the surround-
ing environment as time evolves and, therefore, to consider that the agent
is unable to produce instantaneous forecasts in a way that is completely
accurate. Rational expectations is a too demanding notion, a notion that
implicitly considers that the agent has access to all the available information
and, furthermore, that this information is processed optimally and imme-
diately. Assuming a setup of bounded rationality, where expectations are
formed through a process of trial and error, appears as a more sensible way
to incorporate into the analysis the evaluation the agents make about future
events, namely when taking into account the explanation of macroeconomic
phenomena.

One of the most widely disseminated concepts of learning in the for-
mation of expectations is adaptive learning. Under adaptive learning, at
each moment of time the representative agent makes forecasts using the
available data and such forecasts are revised over time, as new data be-
comes available. This form of modelling expectations has been widely used
to address macroeconomic phenomena; some of the most outstanding con-
tributions in this field include Evans and Honkapohja (2001), Bullard and
Mitra (2002), Basdevant (2005), Preston (2005), Gaspar, Smets and Vestin
(2006), Carceles-Poveda and Giannitsarou (2007) and Evans and Honkapo-
hja (2008), just to cite a few influential studies.

A relevant question regarding adaptive learning is whether this learning
process is likely to be efficient or not. We may identify a fully efficient
learning process as the one in which the forecasting ability converges to a
long run rational expectations / perfect foresight outcome.

As pointed out by Honkapohja and Mitra (2003), it is conceivable to
assume a complete learning process, i.e., to assume that the economy tends,
asymptotically, to settle in a REE (rational expectations equilibrium). Al-
though convergence to the REE is many times pointed out as the rule,
namely when one considers agents that are rational and have a strong ca-
pacity to learn, this is surely not a universal outcome. The possibility of non
convergence may be associated with several misalignments that are relatively
easy to identify, and many times not so easy to solve. For instance, Sobel
(2000) refers to the efficiency of learning as a basic cost-benefit problem,
by stating that optimal learning occurs only as long as the marginal bene-
fit of acquiring and processing information is larger than the corresponding
marginal cost.

More specifically, we might identify the asymptotic REE as the natural
outcome of learning if three requisites are fulfilled: (i) the model specification
is correct (the agent knows what to learn); (ii) the environment is stationary
or evolves in a predictable way (i.e., it is unlikely that the agent will be able
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to converge to a moving target); (iii) the REE is sufficiently rewarding to
compensate for the intertemporal costs of learning.

Above all, it is important to realize that agents have a limited knowledge
of the environment that surrounds them, and therefore optimal forecasts ap-
pear as unrealistic, not only in a transitional dynamics perspective, but also
in the long term. After all, if accumulated knowledge and experience increase
the accuracy of forecasts, the limited knowledge about the true steady state,
a changing environment and the costs / effort involved in learning lead us
to think that the REE must be, in many macro frameworks, the exception
rather than the rule.

According to the previous reasoning, the most pertinent question is how
successful can the agent be if she is not able to generate optimal decisions
about future events. In this case, under perpetual learning / imperfect
knowledge, the long run outcome will probably differ from the REE. Such
deviation may not be substantially significant [as in the monetary policy
models of Orphanides and Williams (2005, 2007)], or it can produce com-
pletely distinct long term time paths of the endogenous variables, relatively
to the rational expectations stable equilibrium benchmark, as in the case
of the overlapping generations models analyzed by Bullard (1994), Sorger
(1998) or Schonhofer (1999); in these models, the steady state is often char-
acterized by the presence of endogenous business cycles, which emerge when
some bifurcation changes the topological properties of the underlying sys-
tem.

In this paper, our concern will be with the compatibility between an
adaptive learning mechanism and the possibility of convergence towards
the steady state equilibrium, in the context of endogenous growth mod-
els. Two types of growth models are addressed: simple one-sector models of
intertemporal utility maximization, in which production is characterized by
the presence of constant marginal returns [the simple AK model of Rebelo
(1993)], and two-sector growth models, in the line of the ones developed in
Lucas (1988), Caballé¢ and Santos (1993), Bond, Wang and Yip (1996) or
Goémez (2003, 2004), i.e., models in which physical and human capital are
both inputs in the production of final goods and there are constant marginal
returns on the education sector.

These growth models are evaluated, as stated, under an adaptive learn-
ing framework [we rely, throughout the text, on the adaptive learning rule
proposed by Adam, Marcet and Nicolini (2008)]. In particular, the future
value of the control variable (consumption) is assumed to be the result of a
learning process. The common feature to all the developed models is that
stability, at the perfect foresight level, is attainable if some degree of learn-
ing quality is ensured, i.e., the representative agent does not have to learn
with full efficiency (and, thus, to attain the REE asymptotically), but in
turn she faces a minimum learning requirement that allows the stable result
to be attained. If such requirement is not fulfilled, the system is unstable
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and the endogenous variables will diverge from the equilibrium result.

The analysis focuses in the determination of local stability conditions
(the analysis of global dynamics leads exactly to the same type of results
and, thus, it is neglected), and these highlight the relevance of the variable
referring to the measurement of the quality / efficiency of learning. This
variable is called the gain sequence and a low value of the steady state level
of the gain sequence is needed to guarantee convergence to the pair capital
— consumption that subsists in the steady state. A declining gain sequence
implies learning efficiency and convergence to a long run zero gain sequence
value means that learning was successful in achieving maximum efficiency
(and, therefore, the REE).

Given the general equilibrium nature of our models, we should look, as
well, to the costs of learning. To improve the formation of expectations,
the agents need to apply resources, which are diverted from the production
of final goods or knowledge. In this context, a relevant trade-off emerges:
to improve expectations (what is crucial to guarantee long run stability) it
is necessary to reduce the use of resources in production, implying a lower
steady state growth rate. The previous reasoning suggests that the agent
should not try to maximize learning efficiency in order to converge to the per-
fect foresight outcome. Instead, she should be concerned in placing herself
in the point where the effort to learn is sufficient to guarantee stability, and
place the remaining effort on maximizing utility and achieving the highest
possible endogenous growth rate.

The remainder of the paper is organized as follows. Section 2 derives the
stability condition for one-sector endogenous growth models (we consider
two versions of the model, one with a rival consumption good and the other
with a non-rival final good); this section also addresses the costs of learning.
Section 3 indicates how one can simplify the treatment of growth models
under adaptive learning in order to study rigorously the dynamic properties
of the underlying system. Section 4 addresses the two-sector growth model;
here, numerical examples have to be used in order to get explicit stability
results. Section 5 concludes.

2 One-Sector Growth Model

2.1 The rival good case

Consider a trivial intertemporal optimization growth problem, where a rep-
resentative agent maximizes consumption utility subject to a capital accu-

mulation constraint. An infinite horizon is assumed and the future utility is
+o00o
t
discounted at rate p > 0. The objective function is Vy = Z (ﬁp) Uley),
t=0
with U(e;) : Ry — R and ¢; the level of consumption in moment ¢. The re-
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source constraint is ki1 = f(kt) —ci+ (1—0)ky, ko given, with f: Ry — Ry
and k; the stock of physical capital in moment ¢; parameter 6 > 0 translates
the rate of capital depreciation.

Our benchmark model is an endogenous growth setup and therefore,
to allow for sustained growth in the long run, we consider a simple AK
production function where marginal returns to capital are constant. Let-
ting A > 0 represent the level of technology, the production function is
simply f(k;) = Ak;. Relatively to the utility function, a standard con-
stant intertemporal elasticity of substitution specification is assumed; letting
0 € R.\{1}, the function takes the form U(c;) = Ctll_gefl. For the particular
case § = 1, we assume U(c;) = In¢. In both cases, the main property a
conventional utility function must exhibit, i.e., the presence of decreasing
marginal utility, is verified.

In this first setup, final goods are rival: they can either be consumed
or, alternatively, returned to production to generate additional value. The
current value Hamiltonian function concerning the specified problem is

1
H (kg ce,pe) = Uler) + (1+,0> Eipiy1(Aky — ¢t — 6ky)

with p; the shadow-price of capital and E;p;+1 the expected value of the

shadow-price of capital for the subsequent period of time. First-order op-

timality conditions are: (i) Epiq = (14 p)e; ¥ (i) (1 + A — 8)Eprq =
¢

(14 p)py; (iid) thin ky (ﬁp) pr = 0 (transversality condition). The first
——+00

condition can be presented one period ahead, such that Eipiio = (1 +
p) (Eices1) % the same for condition (ii): (14+A—8)Epra = (14 p)Epigr.
From these two last expressions, the expected value of consumption for the
next period emerges as a constant share of today’s level of consumption, i.e.,

144-5\?
1+p

Defining v, := ¢;/ki and Eypy 1 == Eyciq1/kit1, the following equation
of motion for the consumption-capital ratio is derived,

(1+A—5> 1/6
1+p
(1+A—-90)—1,

Notice that in the presented problem, the next period value of the state
variable (capital) is known with certainty, given the deterministic nature of
the resource constraint. In opposition, the next period value of the control
variable (consumption) is an expected value, given the established relation
between the shadow-price of capital and the level of consumption.

The steady state of the consumption-capital ratio is defined as 1 =
{Y|Ewp,y1 = v} Computation reveals a unique value ¢ = (1 + A —

Eicii1 = ( ct.

By = Wy (1)
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_sya-0/67 . . T —
5) |1 — A+A—0)1 070 ; in the case # = 1, the expression simplifies to ¢ =

(1+p)1/®
1—_@(1 + A —9).
Under perfect foresight, i.e., Exp; 1 = 1., equation (1) is unstable,
given that agfﬁl =1+ ﬁ > 1. The steady state is accomplished

only if the initial value of consumption is located on the stable path (con-
sidering variables consumption and capital separately, we would have a two-
dimensional system with one stable dimension; this saddle-path stability
result implies convergence towards the steady state only if the level of con-
sumption is chosen in order for the stable trajectory to be followed).
Rather than assuming perfect foresight, we consider that expectations
are formed through a mechanism of adaptive learning. We consider an esti-
mator b; such that Eyp, | = bytpy; adaptive learning also requires assuming

t—1

the dynamic rule by = b;_1 + o (Zﬁ .~ bt,l), bo given. In this equation,

ot € (0,1) concerns to the gain sequence, that is, it represents a measure of
learning efficiency.

Learning is efficient if o, — 0 as ¢ — +00; in this case, perfect foresight
holds asymptotically, i.e., the agent is able to learn how to forecast accurately
after a given sequence of time periods. The closer o is to 1, in a steady state
perspective, the less efficient is the learning process. In this last case, the
agent still needs to continue learning in the long run. Of course, a changing
environment may imply that the agent needs to continue learning even if she
acquires and processes information with efficiency; to simplify the analysis,
we will assume that the long run value of the gain sequence is associated
with a low learning quality.

We do not explicitly present a dynamic equation for o;; we only specify
that there is a unique stable fixed point for o, @, that translates the degree
of long term learning efficiency. The closer to zero this value is, the more
efficient is the learning process.

1+4-5\1/9

The value of the estimator is presentable as b = (1+1,K<S)>—w' Replacing
t

this on the presented learning equation, we arrive to the two-dimensional

system,

(2eas8)"”

o 14

Vo= A=0) = e (2)
(1—0v) (1+Af§)—wt,1 +ou Ztt:ll

2t = ¢t71

The stability properties of system (2) are addressed through a local
analysis in the steady state neighborhood. We first consider the simple
case 0 = 1 and, subsequently, we generalize the analysis.

Proposition 1 The AK endogenous growth model with a logarithmic utility
function is locally stable under adaptive learning if condition & < p holds.
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Proof. The linearization of system (2) in the neighborhood of the steady
state yields

e R Gl e

a- | 1 0 a1 =

Let J be the Jacobian matrix of the previous linearized system. Stability
conditions are:

1—=Tr(J)+ Det(J) =57 >0

1+Tr(J)+ Det(J)=2—3+20/p>0

1—Det(J)=1-37/p>0

The first two stability conditions hold for any @ € (0,1) and p > 0. The
third condition requires ¢ < p =

The result in proposition 1 indicates that a relatively high level of learn-
ing efficiency is necessary to guarantee stability (at the found steady state
level). The value of @ must be lower than the intertemporal discount rate
and parameters A and d do not influence the long term outcome. If 7 = p,
the system undergoes a Neimark-Sacker bifurcation (the eigenvalues of ma-
trix J turn into two complex values with modulus equal to 1) and local
instability implies & > p.!

Turning to the case # # 1, one finds a more sophisticated stability con-
dition,

Proposition 2 The AK endogenous growth model with a generic constant
intertemporal elasticity of substitution utility function is locally stable under
adaptive learning if condition @ < (1 + A — 8)0=D/0(1 4 p)1/? — 1 holds.

Proof. Proceeding as in the proof of proposition 1, we linearize system

2,
[wt—zp ] B [ l-o+0/z —o/z ] ' [ Yy — ]
2z — 1 0 -1 —

with z := (14+ A — 0)=D/(1 + p)/? — 1. Computing stability conditions

1-Tr(J)+ Det(J)=57>0

1+Tr(J)+ Det(J) =2—7+25/x >0

1—Det(J)=1-7/x >0

Because one must have ¥ > 0, then > 0. Thus, once again, the first
and the second stability conditions hold, and the third requires & < x; this

is the condition in the proposition m

! Global dynamic results do not differ, in what concerns stability conditions, from the
ones derived locally. The stability area is the same and the local instability regions corre-
spond mainly to irregular cycles with no economic meaning [extremely high values (both
positive and negative) of the ratio 1,]. This pattern is found for the various model spec-
ifications thorughout the paper; thus, we neglect global dynamics and focus on a local
perspective.
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The result in proposition 2 nests 8 = 1 as a particular case. Note that in
the general case the level of technology and the depreciation rate are impor-
tant parameters for stability. The main result is similar to the previously
obtained: a minimum degree of learning efficiency is required; in this case,
the set of parameters (p, 4, d,0) is relevant to the formation of the threshold
value.

The stability outcome of the AK growth model for a rival final good
is presentable graphically within a trace-determinant framework. The fol-
lowing relation can be established between trace and determinant of the
Jacobian matrix of the linearized version of (2): Det(J) =Tr(J) — (1 —7);
recalling that Det(J) > 0, the dynamics of the system is translated graphi-
cally by the bold line in figure 1.

FEE foure 1 FFF

In figure 1, the area inside the inverted triangle formed by the three
bifurcation lines corresponds to the stable area. The system locates in this
area if @ is relatively low. Instability prevails after the Neimark-Sacker
bifurcation line (Det(J) = 1) is crossed.

2.2 The non-rival good case

On a second version of the endogenous growth problem, we assume that the
produced final good is non-rival (k; > 0). Thus, the representative agent

+oo
~ t o~ ~ ~ -~ ~
maximizes Vg = Z (?1;;) U (k) subject to kyr1 = Aki+(1—90)ke, ko given.
t=0
The utility function is similarly specified relatively to the first model, i.e.,

~ 1-6 ~ ~
Uky) = ktlfe_l for 6 € R;\{1}; the particular case U(k;) = Ink; is also

addressed.
The optimization problem allows to build the current value Hamiltonian
function,

_ ~ 1 ~
H(k,p:) =U(k — ) Eup, A -0k
(K¢, pt) (ki) + <1+p> D1 ( )kt

Once again, p; refers to the shadow-price of the final good and Fip;11 is
the corresponding expected value for the next period.

First-order conditions come: (i) (1+ A —9)Eipr1 = (1+p) (ﬁt - %{9>;
~ t
(ii)) lm Ay (ﬁ) pt = 0 (transversality condition). We now define ¢, :=
t——+o00 P

ﬁtk:f and By, 1 1= Etﬁt+1kf+1. As a result,

B =1+ A=0)V(1+p)(p, — 1) (3)
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Letting the steady state value of ¢, be ¥ = {B|Eip;, 1 = ¢;}, a unique

steady state is found: @ = (l+p)f(1].ii)47(5)1_9' The need to ensure » > 0 im-

poses the constraint (14 p) > (14+A4—68)~9: the condition is automatically
verified for @ = 1, case in which @ = (1 + p)/p.

In the case of perfect foresight, the condition implying @ > 0, also sig-
nifies that d¢,,1/0¢; > 1, i.e., equation (3) exhibits instability. For some
Yo # @, the system does not converge to the steady state. Under adap-
tive learning, stability properties may be addressed just as in the previ-

ous section. First, consider the estimator by = Eyp,, /¢, and the rule
gt = fl\)/tfl + o (zi:; —gtfl), g() given.

The learning setup yields the following system,

0 = 1
t— 1+A-86)1—0 o4
(1_Ut)/‘ﬁt—1+o—t(1_%ﬁ)

Vg = Pi—1

Proposition 3 furnishes the stability result,

Proposition 3 The AK endogenous growth model with a non-rival final
good is locally stable under condition 7 < (1+A—8)O=D(1+4p)/? —1. This
nests as a special case T < p, for 0 = 1.

Proof. Proceeding in the same way as for the propositions in the pre-
vious section, we linearize (4) around @, obtaining the matricial system

[ =P ] _ [ 1-5+7/7 -0/ ] , [ Yro1—P ]
v — @ 1 0 V-1 — @
with 7 := (14+A—6)@D (14 p)/? —1. The system is stable if the following
conditions hold for the Jacobian matrix in the system:

1—=Tr(J)+ Det(J) =57 >0

1+Tr(J)+ Det(J) =2—7+25/z >0

1—=Det(J)=1-3/ >0

The first two stability conditions are satisfied [note that z = (1 + A —
§)®=1(1 4 p)/7 > 0]. The third condition requires & < T, as stated in the
proposition. If 8 = 1, it is straightforward to arrive to the same stability
condition as in the rival final good case m

Qualitatively, results are not radically different from the rival good case.
A minimum learning efficiency ceiling is required in order for stability at
the perfect foresight level of the endogenous variable to hold. Once again,
we obtain the trace-determinant relation Det(J) = Tr(J) — (1 — &) and we
observe that Det(J) > 0. Figure 1 depicts, also in this circumstance, the
dynamic behavior that is implicit in the learning model.
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2.3 The costs of learning

The pursued stability analysis has suggested that there is a minimum learn-
ing efficiency needed to attain convergence to the steady state. If no costs
are associated with acquiring and processing information in order to learn,
no constraint is placed on how much the representative agent learns, as long
as the stability interval is attained. If, to learn, it is necessary to spend
resources, then the agent has an advantage in placing herself immediately
to the left of the value that guarantees stability, saving resources relatively
to a situation of completely efficient learning (i.e., a learning process guar-
anteeing = 0).

Recover our simplest model, the one with a rival good and logarithmic
utility. In this case, the steady state growth rate of the economy is v =
(A—p—10)/(1+ p), in the absence of learning costs. Now, consider that a
certain amount of physical resources pk; is used to learn through time. The
resource constraint is changed to ki1 = Akt —ci—pke+(1—39)k (1 € (0, 1)),
and the growth rate decreases toy = (A—p—p—239)/(1+p). If the long run
value of the gain sequence is dependent on u, such that, for a(u), we have
0, < 0, then a trade-off arises: investing in learning improves the learning
result (lower @) but it reduces the long run rate of growth. Furthermore,
given that 1) = ﬁ(l + A — p—§), diverting resources from the production
of goods to learning will imply a smaller long run consumption-capital ratio.

The desirable share of physical resources that should be allocated to
learning in our framework is easy to determine: it should be the value that
allows for a steady state gain sequence immediately below the discount rate;
this is the value that allows for the highest possible steady state growth rate
and consumption-capital ratio without compromising stability.

Let us consider a numerical example. We assume the benchmark values
of the endogenous growth model taken in Barro and Sala-i-Martin (1995),
page 191; all values are per year: p = 0.02, 6 = 0.05, A = 0.11 (we also
assume that the consumption good is rival and that # = 1).2 With these
values, the growth rate of the economy in the steady state is v = 0.0392
(3.92%) and the consumption-capital ratio is 1) = 0.0208, i.e., consumption
represents 2.08% of the accumulated capital.

Now, assume the following relation between the steady state gain se-
quence and the share of resources devoted to learning: &(u) = s(1 — p)?,
with 0 < s < 1. Take s = 0.021 and consider the following alternatives for
w o =0; p=0.01; p = 0.02; x = 0.03; and p = 0.04. Table 1 indicates how
learning costs influence the steady state outcome and allows to understand

2In Barro and Sala-i-Martin (1995), the value of the technology relates to the human
capital sector. Here, for now, we do not have an education sector and, thus, it is the
technology of the final goods sector that functions as the engine of growth. Thus, we use
that value of technology to characterize the technology conditions of our economy and to
obtain a reasonable long term economic growth rate.
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where the efficient learning cost is located.

m v ) T Stability (o < 0.02)
0 [0.0392 0.0208 0.021 No

0.01 | 0.0294 0.0206 0.0206 No

0.02 | 0.0196 0.0204 0.0202 No

0.03 | 0.0098 0.0202 0.0198 Yes

0.04 0 0.02  0.0193 Yes

Table 1 - Stability result under different learning investment effort.

Table 1 indicates that the absence of resources diverted from the produc-
tive activity to learning benefit the economy both in terms of the steady state
growth rate and in terms of the long run level of consumption relatively to
the stock of capital. Nevertheless, the absence of investment in learning or a
too low investment does not allow to attain the steady state result. Only for
1 > 0.03 we observe stability. Thus, the representative agent should choose
to allocate, in the steady state, 3% of the accumulated resources to improve
the learning capabilities. In this way, the steady state is accomplished for the
best possible growth rate (0.98%) and the best possible consumption-capital
ratio (0.0202). Observe that the steady stat growth rate falls significantly
with the increase in the share of capital withdrawn from the goods sector,
while the steady state level of the consumption-capital ratio does not suffer
significantly with the rise in p.

3 A Two-Step Linearization Procedure

3.1 The general procedure

The one sector endogenous growth model analyzed above did not present
a too demanding analytical challenge, given the simplicity of the involved
expressions. Introducing additional elements into the model (as in the two-
sector model of the following section), the simple analysis that we have taken
becomes compromised. In this section, we propose a shortcoming that turns
possible the analysis. This shortcoming will consist on a two-step lineariza-
tion procedure. Recall that the analysis is local, in the neighborhood of the
steady state, and therefore we may proceed with a linearization process in
two phases: first, we linearize the value of the estimator b; and, then, the
obtained system of equations. This procedure will be explained in general
terms, and then applied to the one-sector endogenous growth model, to show
its viability.

Consider some variable, defined in time, X; € R. The expected value
of this variable is Fy X1 = By X}, with B; the adaptive learning estimator:

B; = B;_1 + oy (ﬁi‘l — Bt_1>, By given. The gain sequence is defined as

-2

10
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previously. Consider that there is a unique steady state point X. We may
linearize function F'(X;) = E;X;41/X; in the steady state neighborhood, to
obtain F(X;) ~ 1+ F'(X)(X;—X). Replacing the estimator in the adaptive
learning rule by function F', the following explicit two-dimensional system
is obtained:

{ Xp = (1= o) X1 + 8% [322 - (1- F(X)X)] (5)

1(X)
Zy = X4

The local evaluation of system (5) around X leads then to the matricial
System

Zio1— X
(6)

X;—X|_[1-7+0/(F(X)X) —a/(FF(X)X) ]| [ Xt:1—X
Zi— X | 1 0
A generic stability condition is presentable,

Proposition 4 The value X corresponds to a stable steady state value if:
(i) 7 < F'(X)X (in the case in which F'(X)X >0); -
(1) 7 < 2F' (X)X /(F'(X)X — 2) (in the case in which F'(X)X <0).

Proof. Trace and determinant of the Jacobian matrix of system (6) are,
respectively, Tr(J) =1 -5 +7/(F'(X)X) and Det(J) =7 /(F'(X)X). The
stability conditions come,

1—=Tr(J)+ Det(J) =7 > 0;

1+Tr(J)+ Det(J) =2 -7+ 25/(F'(X)X) > 0;

1—Det(J)=1-7/(F'(X)X) > 0.

Assuming F'(X)X > 0, the first two stability conditions hold, and
the third one requires & < F'(X)X. Assuming F'(X)X < 0, the first
and the third stability conditions are verified and the second implies & <
2F'(X)X/(F'(X)X —2) m

Two points should be emphasized in what respects proposition 4. First,
we may complete the dynamic analysis, by inquiring about points of bi-
furcation. In the case F'(X)X > 0, the point & = F'(X)X will signify a
Neimark-Sacker bifurcation (two complex eigenvalues with real part equal
to one) separating stability and instability regions. In the case F'(X)X < 0,
the point & = 2F'(X)X /(F'(X)X — 2) is the frontier between stability and
saddle-path stability, and it corresponds to a flip bifurcation (one of the two
eigenvalues assumes the value —1). If one combines trace and determinant of
J, we obtain the relation Det(J) = Tr(J)—(1—o) (the same relation we had
on the endogenous growth problem; the difference relatively to the present
setting is that we considered only the case corresponding to F'(X)X > 0).

The trace-determinant relation is such that we encounter the dynamics
of the model on a parallel line to 1 —Tr(J)+Det(J) = 0, as in figure 1. If one

11
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allows for F/(X)X < 0, we may extend that line to negative values of the
determinant, and observe that the bifurcation line 1 + Tr(J) + Det(J) =0
is crossed in a flip bifurcation point.

The second relevant information that proposition 4 furnishes relates to
the intuitive idea that, generically, a stability condition is a condition that
indicates which is the maximum value of learning inefficiency, above which
the system is no longer stable.

3.2 Applying the linearization procedure to the one-sector
growth model

In this subsection, we use the previously described procedure to attain the
same results one already knows concerning the one-sector endogenous growth
model. We begin by looking at the rival good case.

Reconsider the rival good one-sector endogenous growth model analyzed

1+A—6

1/6
previously. Let us define function F(¢,) := Etiﬁ“ = ((1 ;Xﬁ 6))_ e Adopting

the local linearization procedure, this function is presentable as F(i,) ~

1/6 _
1+ (%) - (¥, — ) or, equivalently, F(i,) ~ 2 — (1+A—5)(9_1)/0(1 +

1/6
p)l/ o+ <1i;’i 5) 1. Recovering the difference equation relating to the

learning estimator, a two-equation system is derived,

Yy~ (11— O't)%btfll )
+ o (”ﬁf) / [wt—_—j —(2-(1+A-8)O-D/O1+ ,o)l/@)} (7)
2t =Py

The first equation of system (7) is substantially different from the one
in system (2); however, the local dynamic properties are exactly the same.

By linearizing system (7) in the neighborhood of the steady state, the
same Jacobian matrix as in the original formulation is obtained and the
trace and determinant of such matrix continue to be T'r(J) =1—-7 +7/x
and Det(J) = g/ (with x defined in the proof of proposition 2). Therefore,
the system that is linearized in two steps has exactly the same local stability
properties as the original one.

A conclusion identical to the previous one is withdrawn in the non-rival
good growth model. Assume F'(y,) := Et:%’:“ = (1+A—5)(9*1)(1+p)(1—¢%).

Linearizing, F(g¢,) ~ 14+ (1 + A — §)@D(1 + p)%((pt —©). The adaptive
learning system comes,
pr = (1 —0o1)ppq )
+o [(+p)—(1+4-5)' 7] |:90t71 2(1+A—5)<1—9>—(1+p)] (8)

A+ A—)T0(14p) |v-1  (1+A-8)TD
Ut = P

12
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Again, one finds relevant differences between the shape of the first equa-
tion of system (8) and the shape of the first equation of (4). Neverthe-
less, the coincidence in terms of local dynamic properties exists. As before,
Tr(J)=1—-07+7/x and Det(J) = 7/z, with T defined in section 2.2.

The one-sector endogenous growth model has allowed to illustrate that
the moment of the linearization is irrelevant in what concerns local dynamic
properties. This result is useful when analyzing higher dimensional systems,
as the two-sector growth model of the next section.

3.3 A three-dimensional example

To understand how additional variables may be included into the analysis,
consider now variables X;,Y; € R and let F; X, 11 = B; Xy, with B; the adap-
tive learning estimator, and Y41 = G(X4,Y;), Xo, Yo given. Adopting the
same procedure as before, we define F'(Xy,Y};) := E;X;+1/X4, and compute
a linearized version of this function, F(X;,Y;) ~ 1+ Fx(X,Y)(X; — X) +
Fy(X,Y)(Y; —Y). The adaptive learning rule leads to the following generic
System,

Vi =G(Xi-1,Y-1) -
Xt = (1 — Ut) Xt—l =+ %YE—I}
gt X — —_— === —_—
+ 5l e - - EE VX -REY)] o)
Fy(X)Y)
~ ey O &e-1, Yin)
Zy = X1

The additional dimension does not allow to present, in simple terms, a
stability condition as the one found for the two-dimensional system. How-
ever, through a numerical example, we show that the stability condition has
the same basic characteristic already noticed: stability exists for a steady
state gain sequence value below a given threshold.

The Jacobian matrix associated to the linearized system obtained from
(9) is:

GY (Y7 ?) L
J = | 1-7-Gy(X, ?>>F§E§’§§
0
Gx(X,Y) 0
_ 5 Fy(X)Y) ~ ki
Lot mamx — nan O Y —ERTE
1 0

Trace, sum of principle minors and determinant of matrix J are, re-

spectively, Tr(J) = 1 =7 + e = ey} Ox(X.Y) + Gr (X1

13
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SM(J) = (1-7) (GY(Y, V) - Ly
and Det(J) = %E.

Stability conditions for three-dimensional systems are expressed as [see
Brooks (2004)],

(i) 1 — Det(J) > 0;

(ii) 1 = XM (J) + Tr(J)Det(J) — (Det(J))? > 0;

(iii) 1 = Tr(J) + XM (J) — Det(J) > 0;

(iv) 1+ Tr(J)+XM(J) + Det(J) > 0.

Applying these conditions to the previously found trace, sum of prin-
ciple minors and determinant implies reaching a not too straightforward
stability result. A numerical example illustrates the obtainable results. Let
Fx(X,)Y)=1,Fy(X,Y) = -05,Gx(X,Y) = 0.25,Gy(X,Y) = 0.75 and
X = 0.1. In this case, the linearized system under appreciation is:

Q
X
=
=
SN—
+
Q
<
3
=
Ql
_|._

Y, — Z 0.75 0.25 0 Yi g — z
X,—X | =] 055-0.125 1125497 —107 | - | X;o1 — X
Zi— X 0 1 0 Zi1—X

From the Jacobian matrix, we obtain Tr(J) = 1.875 + 97, XM (J) =
0.875 + 16.625¢ and Det(J) = 7.55. Applying the four stability conditions,
one finds, respectively, (i) o < 0.133, (ii) 7 < 0.071V 7 > 0.157, (iii) & > 0,
(iv) 3.75 + 33.125¢ > 0. The third and fourth conditions hold for any
7 € (0,1); the relevant stability condition is given by the intersection of the
first two inequalities and, thus, the intended result is @ < 0.071: the gain
sequence must assume a steady state value below 0.071 in order to guarantee
convergence to the steady state point (X,Y).

4 Two-Sector Growth Model

To the intertemporal optimization problem addressed in section 2, we now
add a second capital input (we consider only the rival final good case).
Human capital is produced under a constant marginal returns technology,
i.e., we consider a function ¢g((1 — u;)ht), g : R+ — Ry, in which A > 0
represents the available stock of human capital and 1 — u; € (0,1) is the
share of human capital allocated to the generation of additional quantities
of this input. Conversely, u; will be the share of human capital used to
produce final goods. The constant returns assumption implies ¢’ = B, with
B a positive constant that will represent the productivity of the education
sector.

The physical capital dynamic equation is similar to the one previously
considered, with a relevant difference: the production function has two ar-
guments, which are the two forms of capital, f(ki,ushy), with f : RZ —

14
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R,. The tractability of the model requires considering a specific functional
form for the production function; a Cobb-Douglas specification is assumed:
f(ke,uthy) = Ak (ughy)'=%, with « € (0,1) the output-capital elasticity. In
this function, returns to scale are constant and marginal returns are dimin-
ishing.

Taking a same depreciation rate for both forms of capital, the two sector
endogenous growth model is specified as follows,

—+o00 1 t
Max ‘/0 == Z(l-'—p) U(Ct)

t=0
subject to
kipr = AES(ughe)' ™ — ¢ + (1 — 6)ky
hiv1 = B(l—uy)h+ (1 —0)h
ko, ho given

In the above problem, the two capital inputs are the state variables.
The process through which capital is generated is fully deterministic and
assuming an efficient allocation of resources, then the levels of capital in
t+1 are known with certainty. Consumption and the share of human capital
allocated to each one of the possible uses are control variables and their
dynamics depend on the expected values of the shadow-prices of capital.
Therefore, we will not have a perfect knowledge about the values of ciy1
and wu.y1; expectations are formed relating each one of these values.

4.1 The stability condition

To search for stability conditions in the two-sector competitive growth model
under adaptive learning, we will need to assume a set of simplifying assump-
tions. The first assumption is that the representative agent does not choose
an optimal path for the share u;; the human capital share is assumed con-
stant through time at the steady state level: u; = w. In this way, one can
focus the attention on the consumption - physical capital ratio, as one did
in previous sections. The second simplifying assumption consists in adopt-
ing the linearized estimator procedure of the last section; this is the only
way through which it is possible to obtain explicit stability conditions under
learning. The third shortcoming relates to the assumption of specific para-
meter values in order to obtain meaningful relations; otherwise, one would
obtain cumbersome combinations of parameters that would give no relevant
information about the dynamics of the system. Finally, a fourth assumption
relates to the utility function: we restrict the analysis to the simplest case
U(er) =Ingy.

The current-value Hamiltonian function of the two-sector problem takes
the form
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H (K¢, hi, e, g, c,ug) = Ing
+Eypre [AR (uehe) ™ — ¢0 — 0ki]
+FEiqiv1 [B(1 — ug)hy — dhy]
Variables p; and ¢; are the shadow-prices of physical capital and human

capital, respectively.
Computing optimality conditions, the following set of relations is found:

1 1
c o (1+p> tPe+1

E A [ ke \®
H, = 0— tCIt+1:(1_a)<t>

Eipii1 B \ uihy
Ewpi1 —pr = —Hp=—
1 utht>1_a

—— | [1+aAd —0| E =
<1 n p) < it tPt+1 Dt
Eqgqy1—q = —Hp=—

1
—— | (1+B—-0)FE =
<1+p> ( ) tqt+1 qt

1\ 1\
. ETookt <1+p> P = tE-IFooht <1+p> gt = 0 (transversality condition)

From the first and the third optimality conditions, an equation of motion
for consumption is derived,

-«
Erugyr1hia N
1+ aA <7kt+1

1+p

For the proposed problem, the steady state is defined as the long run
locus in which w; is constant and variables k;, h; and ¢; grow at the same
constant rate. This standard definition allows to present the steady state
growth rate of the economy as v = B(1 —u) — 4. It also allows to define
variables that assume constant long term values. The following are relevant:
the consumption-physical capital ratio, ¥, := ¢;/k; (the expected value for
this ratio will be Ey); 1 = Eici41/ki1); the average product of capital,

EtCt+1 = Ct (10)

¢, =A (“i—i”) ¢ [under the assumption u; = w, the value of the defined
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ki1
ratio between co-state variables Q; := p;/q;. This last ratio possesses a
constant steady state value, as the previously defined variables, given the
second optimality condition.
The shadow-prices equations of motion can be combined into a unique
dynamic equation,

_ 1—a
variable in ¢ + 1 is known with certainty: ¢, ; := A (M) |; and the

1+B-9
1+al,—9
In the steady state, E;Qiy1 = Q; and, thus, ( = B/a. To obtain

other steady state values, namely for ¢, and u;, we resort once again to the
stability conditions to write the relations

EQi1 = Qt (11)

B(l—-m)+1-6\""
Cip1 = < Ci T/z):_l _5 ) G (12)
—6
Et¢t+1 = Lt aCtH Wy (13)

(L+p)(C — by +1—-10)

Imposing ¢ := (41 = ¢, and ¢ = Ewp, .1 = 1, one finds the steady
state values uw = I—J’;p 1+gﬂs and 9 = 1er(l +B—-6)+ laaB. Observe that
condition @ < 1 requires the constraint over parameters B > p(1 — J).

To analyze system (12)-(13) under learning, we will use the linearized

estimator technique of the previous section, that is, we consider F(¢,, ;) :=
1+al,, 1—0 — — — _ =z

(TG, i 1) and compute by = 1+ (1, owtj@wgw 0(¢—0)- The

derivatives are Fy, (1, ) = (=)p/ut(tp) 4nq Fe(,¢) = )p/u+(1t+p)—a

1+B—0 1+B—46
The adaptive learning rule is the one used throughout the text, i.e., by =

b1+ o (i *; — b— 1) by given. The learning system, then, will be

7T -
G = (%) Ci-1
Yy =(1—o0¢) [wt_l + FC(ZE)Q 1}
Rk i - (- REOT-RE00] A
0

v, ( B(1-m)+1-3 )1 i
EZ) Ct—lfwt_1+1*5 t—1
¢t—1

Proceeding as usual, the local linearization of (14) would allow to obtain
a Jacobian matrix, relatively to which the analysis of stability is possible.
However, an explicit stability result is not feasible to attain under so many
involved combinations of parameters.

At this point, we introduce a vector of benchmark values for parameters,
in order to explicitly present stability results, and in the next subsection we
change some of these values in order to evaluate the impact of parameter

R,
Fi(
Fy(
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changes over the stability outcome. We adopt, once again, the values used
in Barro and Sala-i-Martin (1995), page 191, which are reasonable values to
describe a developed economy (all values are per year): p = 0.02, 6 = 0.05,
a=0.5 B=0.11.

Given the steady state human capital share, the long run growth rate of
the economy is v = B ;‘:;p (the economy’s growth rate benefits from a better
human capital index of technology and it is penalized by higher depreciation
and discount rates). In our specific numerical example, v = 0.0392, i.e., the
economy grows at an annual rate of 3.92%.

Parameter values allow for a full characterization of the long run locus;
particularly, one may present the steady state values of the average product
of capital, the consumption-capital ratio and of share u;. The results are:
¢ =0.22; ¢ = 0.131; @ = 0.189. The specific example indicates that, in the
long run, each unit of physical capital allows to produce 0.22 units of final
goods, that consumption represents 13.1% of the stock of physical capital,
and that 18.9% of the available human capital is allocated to the production
of final goods, while the remaining 81.1% are used to generate additional
human capital.

For the array of parameter values that was considered, we transform
system (14) in the following system:

_ 1.039
Ct =\ Coiy 7005511
by = (1 — o),y — 0.534C,_1 + oy [0.988wt:11 - 0.973] 4 0.534¢,

2t
2t =1y

(15)
Linearizing around ((, %),
¢ —C 0.894 0.106 0 Cio1—C
Y, —1¢ | = | —0.057+0.5345 1.057 + 6.5546 —7.5545 |-| ¥, 4 — ¢
Zt — a 0 1 0 Zt—1 — a
(16)

Trace, sum of principle minors and determinant of the Jacobian matrix
in (16), are straightforward to obtain: T'r(J) = 1.951 + 6.554a, XM (J) =
0.951 4 13.3587 and Det(J) = 6.7545. Applying the stability conditions for
three dimensional discrete time systems: (i) 1 — Det(J) > 0 = 7 < 0.1480;
(i) 1 — XM (J) + Tr(J)Det(J) — (Det(J))? > 0 = —0.2697 < & < 0.1351;
(iii) 1 =Tr(J)+EM(J) — Det(J) >0=7>0; (iv) 1 +Tr(J) + EM(J) +
Det(J) > 0 = & > —0.1463. Therefore, the stability condition for the
two-sector endogenous growth model under the assumed benchmark set of
parameter values is simply 0 < @ < 0.1351. One more time, the relevant
condition for stability consists in guaranteeing a gain sequence steady state
value below some determined amount, what is the same as saying that a
minimum learning quality result must be satisfied.
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4.2 Sensitivity analysis

To inquire about the robustness of the stability result obtained for the two-
sector growth model, we now propose some changes on parameter values.
We assume 25% changes (positive and negative) in each of the parameters
p, 0 and B. In each case, the other parameters maintain the values of the
benchmark example. Table 2 presents the steady state growth rate and the
steady state value of each assumed variable.

Y ¢ Y u
p=0.025 [0.0341 022 0.1358 0.2350
p=0.015 | 0.0443 0.22 0.1257 0.1424
6 =0.0625 | 0.0270 0.22 0.1354 0.1867
§=0.0375 | 0.0515 0.22 0.1310 0.1912
B =0.1375 | 0.0662 0.275 0.1588 0.1551
B =0.0825 | 0.0122 0.165 0.1027 0.2453

Table 2 - Steady state values on the two-sector growth model.

As the generic results have pointed out, the higher are the discount rate
and the depreciation rate, the lower will be the growth rate of the economy
and the higher will be the steady state value of the consumption-capital
ratio. The share of human capital allocated to the production of final goods
falls with an increase in the depreciation rate, but increases with a higher
discount rate. Relatively to parameter B, the higher is its value, the faster
the economy will grow in the long run. The average product of capital
and the consumption-capital ratio also benefit from an improved technology
level in the education sector. The better is the technology, the larger will
be the share of human capital allocated to educative activities relatively to
the production of final goods.

Proceeding as previously, i.e., by constructing the adaptive learning sys-
tem and by linearizing it in the steady state neighborhood, we compute
trace, sum of principle minors and determinant; this allows to evaluate each
one of the four imposed stability conditions. Table 3 presents the admissible
values for the steady state gain sequence, for each one of the conditions (i),
(ii), (iii) and (iv), that appear at the end of the previous subsection.

(1) (i) GD) (iv)
p=0025 |5>0.1546 -0.2342 <5< 0.1415 o>0 o> —0.1532
p=0015 | 7>0.1415 —0.3228 <5< 0.1288 7>0 &> —0.1394
§=0.0625 | 7>0.1498 —0.2745 <5< 0.1366 >0 &> —0.1480
§=0.0375 | &> 0.1463 —0.2650 <o< 0.1337 7>0 &> —0.14462
B =0.1375 | > 0.1818 —0.3588 <5< 0.1622 &>0 &> —0.1790
B=0.0825 | 7> 0.1149 —0.1804 <5< 0.1074 7>0 &> —0.1141

Table 3 - Stability conditions in the two-sector growth model, under different

parameter values.

19



Stability under Learning: the Endogenous Growth Problem

Table 3 clearly establishes a pattern: it is the upper bound of the second
stability condition that in every case determines the stability result, and this
always corresponds to a given upper limit that is necessary to impose to the
steady state gain sequence value. Conditions (iii) and (iv) are true conditions
under & € (0,1), while condition (i) requires, in every circumstance, a value
for @ above the constraint that is set by the second condition.

Figures 2, 3, and 4 illustrate the stability results; each graphic corre-
sponds to the relation between each one of the parameters p, § and B and
the steady state value of the gain sequence. In every case, the line corre-
sponding to stability condition (i) is the one located above all the others;
the second line from above is the upper bound on the second stability condi-
tion, and it is the line that effectively translates the border between stability
and instability; the two lines located below zero are, respectively, the ones
corresponding to condition (iv) and to the lower bound of (ii).

The figures (and table 3) also allow to perceive another relevant pattern:
the higher are the values of any of the three parameters, the discount rate,
the depreciation rate and the education productivity level, the larger is
the value of the boundary on the gain sequence value. This means that
the learning effort required for long run stability diminishes with increases
on the values of any of the assumed parameters. A larger B relaxes the
learning constraint and allows the economy to grow faster in the steady
state. Larger discount and depreciation rates also allow to attain stability
with less learning quality requirements, but these penalize growth.

¥ figures 2, 8, 4 F*F

As in section 2, one may complete the analysis by considering the effects
of learning costs. Consider, in this case, that learning relating to the im-
provement of the performance of expectations requires resources withdrawn
from the education sector, such that the equation of motion concerning the
human capital variable is now hy11 = [B(1 — @) — v]hy + (1 — 0)h, with
v € (0,1) the share of human capital dedicated to improve learning in order
to better forecast future consumption levels.

The steady state growth rate of the economy becomes v = B(1—u)—v—4.
Steady state ratios are ( = (B — v)/a (the marginal product of capital falls
with an increase in the learning costs); 1) = ﬁ’)/)(quvaf&)Jrl?Ta(va) (in
the steady state, a higher value of the learning parameter implies a fall on the
level of consumption relatively to the capital stock); finally, w = ﬁ %
(the larger are the learning costs, the lower will be the share of human capital
allocated in the steady state to the production of final goods). In the present
case, U € (0,1) requires —(1 —v—19) < B < p(1—v—4¢). The growth rate is,
then, presentable as v = Bflpf*;’*&. Effectively, one observes that the higher
is the level of the human capital resources diverted to learning, the lower
will be the economy’s growth rate.
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Once again, the trade-off is evident: a larger v share penalizes economic
growth, the average productivity of physical capital and the relative level of
steady state consumption. Nevertheless, a too low value of v may imply that
the representative agent is unable to learn enough to guarantee convergence
to the steady state.

As in section 2, we assume the following gain sequence function: 7(v) =
5(1 — v)?, with 5 a positive parameter lower than 1. According to this
function specification, the higher is the value of v, the more the agent learns
(the lower is @): 7, < 0. Let us resort to a numerical example. Consider
the benchmark parameter values used to evaluate the two-sector growth
model and assume 5 = 0.14. Assume, as well, the alternative values v =
0,0.01,...,0.04. Table 4 indicates the obtained results.

v v ¢ P u fod Stability ~ Stability
condition

0 [0.0392 0.22 0.1308 0.1889 0.14 &< 0.1351 No
0.01 | 0.0294 0.2 0.1206 0.1872 0.1372 &< 0.1251 No
0.02 | 0.0196 0.18 0.1104 0.1854 0.1345 &< 0.1150 No
0.03 | 0.0098 0.16 0.1002 0.1836 0.1317 &< 0.1048 No
0.04 0 0.14 0.09 0.1818 0.1290 &< 0.0945 No

Table 4 - Stability result with learning costs: the two-sector growth model.

The main difference relatively to the one-sector case analyzed in sec-
tion 2 is that in the present circumstance the stability condition depends
on the value of the learning costs parameter. Thus, to build the table,
one has to recompute derivatives Fy(¢,() and F¢(¢,(); their values are
Fw(@, () = (1_afﬁﬁj§1+p) and Fg(@, () = —(1_a)%§3£15+p)_a. Note, as
well, that Bgfil 0 = %%Bgv and 8?31 @0 =1- I?TO‘%BJ;’. The
relevant stability condition is, in any case, the upper bound of the second
condition that relates trace, sum of principle minors and determinant of the
Jacobian matrix. With v = 0, the stability result is the same as in the
benchmark case we have analyzed. We have chosen a value for s that does
not allow for stability when no investment in learning is undertaken.

The relevant conclusion in this case is that a higher v allows for a better
steady state learning result, while implying a worse steady state performance
(lower growth, lower average product of capital, lower relative consumption
level and a poorer allocation of human capital to the production of final
goods). Nevertheless, as the gain sequence outcome is improved through a
larger resource allocation to learning, also the stability condition changes,
becoming increasingly demanding; because as v rises, the stability require-
ment changes faster than the steady state of the gain sequence, investing in
learning through the use of human capital does not allow to modify the non
stability result.
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A different result would be obtained if the human capital resources
needed to learn were non-rival, i.e., if by accumulating human capital, the
representative agent becomes better prepared to forecast optimal future con-
sumption, without the need for diverting resources from one activity to the
other. In such case, the agent could maintain the same economy’s growth
rate and the other steady state results while improving the quality of learn-
ing. This scenario would imply an unchangeable stability condition, and
therefore the higher the level of accumulated human capital, the more likely
would be to assure stability, without the need for reallocating resources.

5 Conclusion

We have analyzed an endogenous growth model under the conventional in-
tertemporal utility maximization setup. The future value of the control vari-
able (consumption) is not known with certainty in the present moment. The
way expectations about the next period value of this variable are formed is
the central point of the analysis. Abandoning the perfect foresight assump-
tion and taking into account an adaptive learning rule, we have studied
stability in both one-sector and two-sector environments.

The learning mechanism does not modify the long term steady state
results (unless one considers that learning is costly, and therefore divert-
ing resources to improve the formation of expectations lowers the long run
economy’s growth rate). However, it introduces relevant changes in what
concerns the stability properties of the steady state. There is a relevant
common result for the various models one has addressed: local stability re-
quires a minimum learning efficiency. If the quality of learning is low (the
gain sequence steady state value is relatively high), the economy diverges
from the steady state characterized by a constant growth rate and a constant
consumption-capital ratio.
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Figure 1: Trace-determinant diagram in the AK growth model with a rival
final good.
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