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Abstract

In this paper we apply the techniques of symbolic dynamics and chaos
control to the analysis of a labor market model which shows chaotic behav-
ior and large volatility in employment �ows. The possibility that chaotic
dynamics may arise in modern labor markets had been totally strange to
economics until recently. In an interesting paper Bhattacharya and Bunzel
[2] have found that the discrete time version of the Pissarides-Mortensen
matching model, as formulated in Ljungqvist and Sargent [23], can easily
lead to chaotic dynamics under standard sets of parameter values. This
paper explores this version of the model with two main objectives in mind:
(i) to clarify some open questions raised by Bhattacharya and Bunzel by
providing a rigorous proof of the existence of chaotic dynamics in the
model; and (ii) to show that this type of dynamics can be easily controlled
by linear feedback techniques – the OGY method – without producing
modi�cations to the original model, apart from locally changing its type of
stability. These techniques may be of signi�cant importance for the study
of economic theory and policy, in particular, if complexity becomes more
frequently encountered in the models developed to properly describe the
behavior of modern economies, and the view of purely exogenous shocks
as explaining cycles and volatility looses its large predominance in con-
temporary economics.

Keywords: Symbolic Dynamics, Chaos Control, Matching and Un-
employment
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In a recent paper, Levin [22] discusses the set of results presented over the last
decade by various prominent physicists which led to the conclusion that black
holes seem to be susceptible to chaos. Levin argues that the most realistic
description available of a spinning pair of black holes is chaotic motion, and
goes on to complain that in physics and cosmology ”chaos has not received
the attention it deserves in part because the systems studied have been highly
idealized”. In contrast, in economics we have the interesting fact that even some
of the most simple and highly idealized models describing modern economies
can easily lead to chaotic dynamics.1

In this paper we apply the techniques of symbolic dynamics and chaos con-
trol to the analysis of a labor market model which shows chaotic behavior and
large volatility in employment �ows. The possibility that chaotic dynamics may
arise in modern labor markets had been totally strange to economics until re-
cently, at least as far as we are aware of. However, in an interesting paper
Bhattacharya and Bunzel [2] have found that the discrete time version of the
Pissarides-Mortensen matching model, as formulated in [23], can easily lead to
chaotic dynamics under standard sets of parameter values. This paper explores
this version of the model having two basic objectives in mind: (i) to clarify some
open questions raised in the paper of Bhattacharya and Bunzel by providing
a rigorous proof of the existence of chaotic dynamics in the model; and (ii) to
show that this type of dynamics can be easily controlled by linear feedback tech-
niques – the OGY method – without producing modi�cations to the original
model, apart from locally changing its type of stability. These two techniques
may be of signi�cant importance for the study of economic theory and policy,
in particular, if complexity becomes more frequently encountered in the models
developed to properly describe the behavior of modern economies, and the view
of purely exogenous shocks as explaining cycles and volatility looses its large
predominance in contemporary economics.

The paper is organized as follows. In section 2 we present some basic facts
of modern labour markets and the fundamental aspects of the discrete time
version of the matching model as developed in [23]. In section 3, the dynamics
of the matching model is studied in great detail, including stable steady states,
periodic motion, bifurcations and chaos. Particular emphasis will be given to
the application of symbolic dynamics to provide a rigorous proof of chaos in this
model. Section 4 deals with the control of chaotic motion. Section 5 concludes.

2 Basic Facts and the Matching Model
Until recently, the two largely dominant views of unemployment were those of
the Classical model of macroeconomic behavior and the Keynesian view of sticky
wages due to various forms of market frictions (imperfect information and mar-
ket power). In the former model, the labor market works as a permanent auction
process with fully informed and rational agents and, under these assumptions,
any workers remaining unemployed for a signi�cant period of time are entirely

1See, e.g., [36], [30], [35], [34], [3], [17], [6] and [7]. The potential for very complex behavior
signi�cantly increases if models become somewhat less reductionist, e.g., if heterogenous agents
and di�erent learning processes are also taken into account, [18], [8], [12], [9], [15].



Mendes, Mendes and Sousa Ramos – Symbolic Dynamics and Control 3

the result of a rational response to optimal choices of leisure/work and con-
sumption. In contrast to this view of voluntary unemployment, in the Keyne-
sian model unemployment was the involuntary result of the extreme di�culty
to move prices and wages quickly enough to accommodate shocks in aggregate
demand and aggregate supply (technological shocks).

These two views were seriously challenged over the last two decades. In a
succession of papers, various economists developed what has become known as
the search and matching theory of unemployment, where creation and destruction
of jobs become the major channel to explain the level of unemployment over
time.2 The evidence is very favorable to the basic tenets of this theory, not
only due to the fact that the �ows in and out of employment are (unexpectedly)
massive in modern societies – see, e.g., [14] and [5] – but also because the
econometric results concerning aggregate functions associated with this theory
have been positive, as recently emphasized in [32] for the matching function.

Some evidence of two major points of this explanation of unemployment is
presented in Figure 1: job �ows in and out of employment as a percentage of
working age population, and the ratio of the rate of job vacancies to the rate of
unemployment for the US economy.3 In panel (a) we can observe that over the
1970s/1980s, on average, around 1.85% of the total working age population was
moving into employment (in), against around 1.8% moving out, in every month.
Taking into account that the working age population of the US was on average
above 100 million people over that period, we obtain the interesting �nding
that in every month a number close to 2 million people were getting employed
and a slightly lower number were moving into unemployment. The signi�cant
complexity of these huge �ows is illustrated in the two following panels: (b)
presents a cross plot of the two �ows and suggests the form of an attractor that
is not totally strange to those obtained in some forms of chaotic dynamics; and
in (c) the net �ows of creation and destruction of jobs (in�out) shows a time
series that easily resembles either a linear stochastic process or a chaotic one.
Finally, panel (d) presents evidence of a measure of the market tightness (the
ratio of the rate of vacancies to the rate of unemployment), which also shows an
highly irregular pattern over time.

Why would the labor market of one of the most developed and sophisticated
economies in the world we live in behave in such a volatile way? One possibility,
and usually the most favoured one in the dominant view of economics, is that the
economy has an inherently linear structure and is hit by permanent exogenous
shocks. As these shocks are entirely unpredictable, they render the dynamics
and the cycles hardly predictable and controllable. Another more recent view,
and one which we consider more consistent and realistic, is based on the possi-
bility that the economy has a structure that is nonlinear and the cycles are a
manifestation of this characteristic, either with or without external shocks. In
what follows, a very simple and fully deterministic model will be presented that
is capable of explaining such type of volatility with standard parameter sets.

Let us assume that in every period of time there are large �ows of workers

2Seminal papers in this �eld are [25], [24], [16], [29] and [33]. On the empirical level see
[14], [4] and [5] for the US economy, while [10] and [13] present favourable evidence for the
European economies.

3The data was colected by [5].
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Figure 1: Complex behvior in the US labor market: 1960—2000.

moving into and out of employment: a certain number of job vacancies is posted
by �rms (��) and there is a total measure of workers looking for jobs (��).4 When
a worker and a �rm reach an agreement there is a successful match, and the total
number of these matches is given by the aggregate matching function

� (��� ��) = ��
�
� �

1��
� (1)

� � 0� � � (0� 1) 	 The intuition behind (1) is very simple: the higher is �� the
easier it will be for �rms to get a worker with the desired quali�cations; and the
higher is the level of vacancies posted by �rms �, the higher is the probability
that a worker will �nd an appropriate job. For simplicity we will assume � as
a constant. However, a more adequate treatment would consist of treating � as
a variable dependent on the level of public provision of information by public
agencies with the objective of increasing the number of successful matches.5

The measure of labor tightness is given by the ratio


� � ��
��

4Notice that, in fact, the variables � and � are in their nature very similar to the aggregates
above described by in and out.

5 If public information is costly, an optimal level of this kind of asset would have to be
determined endogenously in this model. However, this procedure would add no signi�cant
novelty to the main objective of the paper (to provide a rigorous proof of chaos in the model
and to exemplify the application of chaos control techniques), and for this reason we keep it
as simple as possible.
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Then, the probability of a vacancy being �lled at � is given by

� (
�) � � (��� ��)

��
= �
��

� 	

Let 
�+1 be the total number of employed workers at the beginning of �+ 1
and let � be de�ned as the probability of a match being dissolved at �. Therefore
we have


�+1 = (1� �)
� + � (
�) ���

where 
� � ����� = ���(1�
�)	 Notice that (1� �)
� gives the number of undis-
solved matches prevailing at � and passed on to �+ 1, while � (
�) �� represents
the number of new matches formed at � with the available number of unemployed
workers and vacancies.

As shown in [23], the model can be solved for the decentralized outcome of
a Nash bargaining game between workers and �rms. Nevertheless, as we are
interested not only on the modelling side of economic chaotic dynamics but also
on the normative side (which is related to the behavior of government and to the
control of chaos in this case), we should focus upon the central planner solution
to the matching model. The objective function of the central planner is given
by

�(
� �) = �
� + � (1� 
�)� ���
where �, � and � are parameters that represent, respectively, the productivity of
each worker, the lost value of leisure due to labor e�ort, and the cost that �rms
incur per vacancy placed in the market.6

Therefore, the planner chooses �� and the next period’s employment level,

�+1� by solving the following dynamic optimization problem

max
�����+1

�X
�=0

�� [�
� + � (1� 
�)� ���]

subject to


�+1 = (1� �)
� + �

μ
��

1� 
�

¶
���

where � is the time discount rate and an initial condition 
0 is given. The
Lagrangian can be written as 7

� =
�X
�=0

½
�� [�
� + � (1� 
�)� ���] + ��

�
(1� �)
� + �

μ
��

1� 
�

¶
� � 
�+1

¸¾
	

The �rst order conditions (FOC), for an interior solution, are given by

��

���
= ����+ �� [�

0 (
�) 
� + � (
�)] = 0

��

�
�+1
= ��� + �

�+1 (�� �) + ��+1

£
(1� �) + �0 (
�+1) 
2�+1

¤
= 0	

6Notice the trade—o� between vacancies and unemployment in this objective function. The
�rst right hand term represents the bene�ts to society from successful matches (working),
while the last two give the leisure costs and the costs associated with posting vacancies.

7 See [11] for a detailed treatment of this standard procedure in dynamic economic analysis.
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The very interesting point in [2] was the manipulation of these FOC to arrive
at a reduced equation that can easily lead to chaotic dynamics. From the �rst
FOC we get

�� =
���

�0 (
�) 
� + � (
�)
and substituting this and the corresponding expression for ��+1 into the second
FOC we obtain

�
��+1 � �
�+1 = 
�� � � (2)

where � � (0� 1) � � � � (1� �) � (0� 1) � � � ��� � 0� � � (���) (1� �) (�� �) �
0	

Equation (2) gives the law of motion for the index of labor market tightness
in the economy under the planner’s solution. In other words, given an initial
condition 
0� equation (2) completely characterizes the trajectory of 
 and the
whole economy	 So, the backward dynamics of this model can be characterized
by the four-parameter family of maps � : [0� �max]� [0� �max] � where

� (
) = (�
� � �
 + �) 1� �
� � (0� 1) � � � (0� 1) � �� � � 0 and


max =
³��
�

´ 1
1��

where �max is implicitly de�ned as the lowest positive root of the equation

���max � ��max + � = 0	
The �rst derivative of the map � can be calculated as

�0 (
) = (�
� � �
 + �) 1��
�

μ
�
��1 � �

�

¶
� 
 � [0� �max] �

which implies that � is unimodal with a unique maximum (critical point) at


max =
¡
��
�

¢ 1
1�� 	 In addition, � has a unique �xed point located to the right of


max if � (
max) � 
max	
The unique �xed point of � is denoted by 
� and is implicitly given by

�
�� � �
� = 
�� � �	 (3)

Despite the impossibility of the computation of an explicit solution for 
�� the
unicity of this solution is obvious by considering

�1 (
) = �

�
� � �
� and �2 (
) = 


�
� � �

where �1 (
) is monotonically decreasing for 
 from 
max to +� and �2 (
) is
monotonically increasing for 
 from 0 to +�	 Therefore �1 (
) = �2 (
) has a
unique solution for 
 � 
max and this is illustrated in Figure 2.

The �xed point is an attractor in the case of backward dynamics if |�0 (
�)| �
1 and in forward dynamics if �0 (
�) � �1	 For �0 (
�) = �1 a period-doubling
bifurcation occurs and the �xed point changes stability. Since it is not possible
to obtain a closed form expression for 
�� this condition cannot be checked in
general but can be checked for each set of parameters separately.
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Figure 2: Unicity of the �xed point.

3 Chaotic Dynamics in the Matching Model
Bhattacharya and Bunzel [2] suggest three examples for the dynamics of the map
�. In the �rst case a period 3-cycle is found, which implies the existence of chaos
in the Li-Yorke sense if the Sharkovsky order is applied. In the second example,
for a suitable choice of parameters, the authors do not �nd a period three orbit
but show the existence of chaos by applying Mitra’s su�cient condition for chaos
in unimodal maps.8 Finally, in the third example, no period three orbit is found
and also the su�cient condition of Mitra is not veri�ed. In this case, the very
existence of chaos for the unimodal map is questioned on the grounds of a lack
of logical proof of such dynamics.

In what follows we revisit these examples and add some further information,
hoping to contribute to the clari�cation of some open questions raised by the
interesting paper of Bhattacharya and Bunzel. For this purpose, a symbolic
dynamics approach is developed for the unimodal map �, which allow us to
perform the computation of the topological entropy for any choice of parameters,
and, of course, permit us to classify the complexity of the map since positive
topological entropy implies chaotic dynamics.
Example 1: For � = 0	961863� � = 0	947099� � = 0	458566� � = 0	155693

there is a unique steady state 
� = 0	4486� and �0 (
�) = �2	13� indicating that

� is locally unstable in the case of backward dynamics and stable in normal
forward dynamics. Two 3-cycles are found by solving the nonlinear equation
�3 (
) = 
� which are: {0	1122� 1	2591� 0	00018} and {0	00051� 0	1624� 1	2054} 	
Having established these results for that parameter speci�cation, the map �

8As argued in [28], for a continuous unimodal map � : � � �� where � is a non-negative
interval, �max is the critical point such that � (�max) � �max and �� is the unique �xed point
of the map such that �� � �max� Mitra states the following: If � satis�es �2 (�max) 	 �max
and �3 (�max) 	 ��, then (�� �) exhibits topological chaos.
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Figure 3: Existence of a 3-cycle.

has a 3-cycle, and the existence of all other periods follows from Sharkovsky’s
Theorem. The Li-Yorke Theorem then establishes that the existence of a 3-cycle
implies the existence of chaotic equilibria.
Example 2: In this example, as argued by [2], a 3-cycle could not be found

for the following parameter values: � = 0	75� � = 0	54� � = 0	62� � = 0	15	 This
is normal because if we �x �� �� � and vary �, for these values we have some
chaotic orbits, and the period three orbit appears only for � = 0	9. Figure 3
shows the map �, the cobweb and the time series for the period 3-orbit and �3	

For a more clear perspective on the type of dynamics of this example, Figure
4 presents the bifurcation diagram and the Lyapunov exponent when the para-
meter � is varying between 0	2 and 1	0. We can observe a period-doubling route
to chaos and stability windows for the 3-cycle and 5-cycle where the Lyapunov
exponent is negative. We can also observe that for � = 0	54 the Lyapunov
exponent is positive which is a su�cient condition for chaos. Moreover, if a
map � possesses a periodic point of period not equal to a power of two then
the dynamical system is complex, which is a well-known fact from Sharkovsky’s
work [37]. In particular, there are cycles of arbitrarily large periods, homoclinic
trajectories, chaos in the sense of Li-Yorke, positive topological entropy, and so
on. From the bifurcation diagram in Figure 4 we observe the existence of a
period 5 orbit for � = 0	58, which implies that orbits of all periods exist and in
consequence chaos exists in the Li-Yorke sense.
Example 3: The set of parameters for this example are: � = 0	9� � = 0	7�

� = 0	6� � = 0	2	 In [2] it is argued that for these values a 3-cycle can not
be found, the su�cient condition of Mitra is not satis�ed, and the possibility
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Figure 4: Bifurcation diagram and variation of the Lyapunov exponent.

of chaotic equilibrium dynamics is questioned. Figure 5 shows the bifurcation
diagram for �� �� � �xed and for � varying from 0	1 to 1	3	 It is straightforward
to see in panel (a) that a period three orbit occurs for � = 1	2, and the unimodal
map is in transition to chaos when � = 0	7, the 3-cycle appearing at the end
of the transition as indicated by the Sharkovsky order. This should not be
interpreted as suggesting that a chaotic equilibrium is not veri�ed for � = 0	7,
actually a two-piece chaotic attractor exists for this value as shown in panel (b).

In order to clarify whether there are chaotic dynamics or not under certain
ranges of parameters values, we suggest that a bifurcation diagram, the variation
of the Lyapunov exponent, the existence of a periodic point of period not equal
to a power of two, and symbolic dynamics are some techniques that can give a
clear answer to this problem. Figure 5 shows that for � = 0	4 the map is not
chaotic, but starting with some bifurcation value for � the equilibrium moves
into chaotic motion.

Turning to symbolic dynamics, we consider again the unimodal map � :
[0� �max]� [0� �max] 	 This kind of map has symbolic dynamics relative to a par-
tition at the critical point 
max	 This is illustrated in Figure 6 for the parameter
values presented in Example 2. So, any numerical trajectory 
0� 
1� 
2� 			 for the
map � corresponds to a symbolic sequence

� (
0) = �0 (
0)�1 (
0)�2 (
0) 			 = �0�1�2			
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Figure 5: (a) Bifurcation diagram when � is varied between 0	4 and 1	3, main-
taing � = 0	9� � = 0	6� � = 0	2	 (b) Two-piece attractor for � = 0	7

where �	 � {���� } depending on where the point 
	 falls in, i.e.,

�	 (
0) =

��
�
� if �	 (
0) � 
max
� if �	 (
0) = 
max
 if �	 (
0) � 
max

	

All symbolic sequences made of these letters may be ordered in the following
way. First, there is a natural order

� � � �  	 (4)

Next, if two symbolic sequences � and �0 have a common leading string ��� i.e.,

� = ���				� �0 = ���				� �	 6= �	
then they must be ordered according to (4)	 The ordering rule is: if �� is even,
i.e., if contains an even number of  � the order of � and �0 is given by that of
�	 and �	, and if �� is odd, the order is the opposite to that of �	 and �		

De�ning the fullshift �2 = {� = �0�1�2				 where �	 = � or  } to be the set
of all possible in�nite symbolic strings of �’s and  ’s, then any given in�nite
symbolic sequence is a singleton in the fullshift space. The Bernoulli shift map
� : �2 � �2 is de�ned by

� (�) = � (�0�1�2			) = �1�2�3			

In general, not all symbolic sequences correspond to the trajectory of an initial
condition 
0	 Restricting the shift map to a subset of �2 consisting of all the
itineraries that are realizable yields the subshift � � �2	
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If the initial condition is chosen to be the critical point, then the corre-
sponding symbolic sequence (kneading sequence)9 determines the topological
entropy of the resulting subshift. We formulate the result in terms of topologi-
cal Markov chains, a special class of subshifts of �nite type where the transition
in the symbol sequence is speci�ed by a 0�1 matrix. Any (
× 
) binary matrix
� = (�	
)	�
=0�������1 � �	
 � {0� 1} generates a special subshift

�� =
©
� � �2 :�
�
�+1 = 1� �! � N

ª
which is called the topological Markov chain associated with�� and� is called
the topological Markov matrix. We say that�
�
�+1 = 1 if the transition from �	

to �	+1 is possible. The matrix � gives a complete description of the dynamics
of the unimodal map.

The premier numerical invariant of a dynamical system is its topological
entropy "���. For a subshift �

"��� (�) = lim
���

log (#$� (�))




where $� (�) is the set of words of length 
 occurring in sequences of �. That
is, the entropy is the exponential growth rate of the �-words. For a shift of
�nite type de�ned by a topological Markov matrix � , the topological entropy
can be computed directly as the natural logarithm of the spectral radius of the
generating transition matrix.

For the parameter values � = 0	75� � = 0	58� � = 0	62� � = 0	15, we found a
period 5 orbit: {1	8549� 0	0013� 0	4756� 1	1047� 0	1350} which is shown in Figure
7 with the corresponding Markov partition. The critical point assumes the value

9See [27] and for a functorial approach to kneading theory see [1].
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max = 0	1452 and generates the symbolic partition for the map �	 The periodic
orbit has the following symbolic address:

(
1
2
3
4
5)
�
= ( �  �)

�

and in consequence we have the following Markov matrix:

������ =

%1 %2 %3 %4
%1
%2
%3
%4

�
���
0 0 1 1
0 0 0 1
0 1 1 0
1 0 0 0

	


� 	

The spectrum radius of this matrix is given by � = 1	5128� which implies that
the topological entropy is positive: "��� ' 0	4140 and this shows very clearly
that we are dealing with chaotic motion in this set of parameter values. It should
be noted that this is a very simple and rigorous way to estimate the topological
entropy of a one-dimensional model and to check for the existence of chaos,

4 Control of Chaos
In this paper we also intend to show that chaotic dynamics may have a signi�-
cant importance for economics not only on the modelling side, but also on the
normative side by giving a possible new dimension to economic policy. To clarify
this point we will apply the OGY method [31] to control the chaotic motion that



Mendes, Mendes and Sousa Ramos – Symbolic Dynamics and Control 13

is produced in this model.10 For such purpose let us note the map by � (
�� ��)
in order to control the unstable period one orbit by applying a tiny perturbation
to �� which is the parameter that we assume the government can a�ect through
�	 The control strategy is the following: �nd a stabilizing local feedback control
law which is de�ned on a neighborhood of the desired periodic orbit. This is
done by considering the �rst order approximation of the system at the chosen
unstable periodic orbit. The ergodic nature of the chaotic dynamics of the model
ensures that the state trajectory eventually enters into the neighborhood. Once
inside the neighborhood, we apply the stabilizing feedback control law in order
to steer the trajectory towards the desired orbit.

For values of 
� close to the unstable �xed point 
� and for values of �� close to
��� the map � can be approximated by the following linear discrete time system

&�+1 = '&� + �(�� (5)

where &� = 
� � 
� and (� = �� � �� are the derivations from the nominal
values in standard control notation for states and input	 ' and � represent
the derivatives of the map � with respect to the variable and to the control
parameter evaluated at the point (
�� ��), that is

' =

μ
��

�


¶
(�����)

and � =

μ
��

��

¶
(�����)

	

Now according to OGY a linear state feedback

(� = �)&�

is applied to system (5). It should be added that this control is only applied
within a certain region

 � = {
 : |
 � 
�| � *} � * � 0
around the �xed point, which we will call the control region. Then, the system
(5) will take the form

&�+1 = (' � �))&��

and thus the closed loop system is stable as long as

|(' � �))| � 1	
Setting (' � �)) = 0� then we have the pole placement technique and obviously
) = '��	

It was shown in the previous section that for � = 0	9618� � = 0	1556� � =
0	4585� � = 0	8 the map � possesses an unstable chaotic �xed point 
� = 0	5298
(Example 1). We �x these parameter values and consider that � is the control
parameter which is available for external adjustment but restricted to lie in some
small interval |�� ��| � *� * � 0 around the nominal value �� = 0	8	 Since

' =

μ
��

�


¶
(�����)

= �2	0454 and � =

μ
��

��

¶
(�����)

= �1	9917�

10For controlling economic chaos in a model that produces hyperchaos see [26].
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Figure 8: (a) Chaotic trajectory; (b) Control switched on at � = 1; (c) Control
switched on at � = 50	

one obtains that
&�+1 = (�2	0454 + 1	9917))&��

and by choosing the pole placement value for this last equation, it follows that
) = 1	02692	 For this value of the control matrix ) the unstable period one
orbit is stabilized, what can be seen in Figure 8, panels (b) and (c). Panel (a)
shows the randomly chosen trajectory which we wished to steer towards the �xed
point. The time to achieve control is very short, despite the initial condition or
the moment when the control was switched on.

5 Concluding Remarks
In order to obtain relevant answers to whether there are or not chaotic dynamics
under certain ranges of parameters values in a 1-dimensional particular model,
we suggest that a bifurcation diagram, the variation of the Lyapunov exponent,
the existence of a periodic point of period not equal to a power of two, and sym-
bolic dynamics are very powerful techniques for that purpose. The application
of these techniques in this paper clearly con�rmed that a very simple model of
a matching labor market, with well behaved aggregate functions (continuous,
twice di�erentiable and linearly homogeneous) do really produce chaotic behav-
ior for a large range of parameter sets, some of which had been questioned in
[2].

Moreover, the irregular dynamics were easily controlled with a very small
perturbation to one of models’s parameters, the topological characteristics of
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the system remain the same, and the only aspect of the model that was changed
was the type of stability of its �xed point: prior to the application of the control
procedure, the �xed point was unstable, becoming and remaining stable as long
as the control is left activated. If we think of this model as representing the
dynamics of a true economy, contrary to a view that has been presented in the
past, we do not have to change the nature of the system in order to control its
chaotic dynamics: all we have to do is to impose small perturbations applied at
the right time and on the right places. Why should chaos, as suggested in most
papers — [2] included — be treated more as a curse for economic policy rather
than a blessing? In most cases, it turns out to be much easier to control the
dynamics of a chaotic system than other forms of dynamics.
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