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Abstract

A local stability condition for the standard neo-classical Ramsey growth
model is derived. The proposed setting is deterministic, defined in discrete
time and expectations are formed through adaptive learning.
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1 Introduction

Modern macroeconomics have progressively replaced the notion that agents
are fully rational by a concept of learning, under which individuals and firms
collect information over time, learn with this information and eventually
accomplish a long term capacity to produce optimal decisions. Rational
expectations / perfect foresight emerge, then, more reasonably as a long run
possibility and not as an every period underlying assumption. The literature
on macroeconomic learning is extensive and covers almost all the relevant
phenomena, like monetary policy, asset pricing or growth, and the analysis
is undertaken both in stochastic and deterministic environments.

Our concern is with deterministic economic growth and the aim is to de-
rive a simple and straightforward condition of stability for the neo-classical
Ramsey growth model. Deterministic models of growth under learning have
been analyzed before in the literature, but essentially in the context of over-
lapping generations models, e.g. by Bullard (1994) Sorger (1998) and Schon-
hofer (1999). A relevant exception is Cellarier (2006) who effectively con-
siders the intertemporal utility maximization setup; however, the concern of
this author is essentially with the search for endogenous business cycles in
a scenario where convergence to rational expectations is excluded from the
start.

The relevant parameter in the analysis to undertake is the steady state
level of the gain sequence. This parameter indicates whether the learning
process was successful (in the sense that it allows for asymptotic perfect
foresight) or not. Optimal learning requires the gain sequence to converge
to zero; otherwise, if it converges to any value between (0 and 1 the learning
process is not efficient (the more it departs from 0, the larger is the degree
of inefficiency). The absence of a perfect process of learning must not be in-
terpreted as an uncommon or even an undesired outcome; taking the words
of Sobel (2000), "Agents in these models begin with a limited understanding
of the problems that they must solve. Experience improves their decisions.
Death and a changing environment worsen them.’ (page 241), and, further-
more, ’An agent will not necessarily learn the optimal decision when the
cost of acquiring additional information exceeds the benefits.” (page 244).

A relevant feature of many learning mechanisms, as the adaptive learning
setup we consider, is that agents do not necessarily need to accomplish the
rational expectations long term outcome to generate exactly the same steady
state result as if they did. Rather, there is generally a minimal requirement
in terms of the long term capacity of predicting future values that produces
precisely the same result as under perfect foresight. If learning is costly (and,
effectively, there are always costs in acquiring and processing information),
then the effort on reaching an optimal forecasting capacity does not pay;
the agent benefits in locating at the point in which: (7) stability at the
perfect foresight level of the considered endogenous variables holds; (ii) the
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costs of learning are the lowest possible. Below, we derive a straightforward
condition for stability that reveals that the higher is the level of technology
and the lower are the discount rate of future utility and the depreciation
rate of capital, the less the representative agent will need to learn in order
to accomplish the intended long term result.

The remainder of this note is organized as follows. Section 2 presents
the structure of the growth model and introduces the adaptive learning
mechanism. Section 3 explains how to transform the model into a linearized
system in the neighborhood of the steady state, allowing for a local stability
analysis. The stability condition is derived in section 4. Section 5 concludes.

2 The Growth Model and the Learning Mecha-
nism

Consider a standard one-sector optimal growth model. A representative
agent maximizes consumption utility intertemporally, under an infinite hori-

zon and taking a positive future utility discount rate, p. Thus, the agent
+oo
t
maximizes Vy = Z (1—J1rp> U(ct), with U(et) : Ry — R the instantaneous
t=0
utility function; variable ¢; represents per capita consumption. The utility

function must obey to trivial conditions of continuity and differentiability,
and marginal returns must be positive and diminishing. To aid on the
tractability of the model, we assume a simple logarithmic utility function
U(er) =Iney.

The resource constraint of the problem is the conventional capital accu-
mulation equation: k11 = f(kt) — ¢ + (1 — §)ky, ko given. Variable k; > 0
represents the per capita stock of capital and é > 0 refers to the rate of
capital depreciation. The production function is neo-classical, i.e., it evi-
dences decreasing marginal returns. Assuming a Cobb-Douglas production
technology, we consider f(k;) = Ak, with A > 0 the technology index and
a € (0,1) the output-capital elasticity.

Maximizing V{ subject to the resource constraint, one derives three first-
order conditions: FEipi1 = 1/cy; [1 + aAk;(lfa) — 0|Eypry1 = (1 + p)py;

t
tlg—nookt (ﬁlp) pr = 0 (transversality condition). In these conditions, p;

stands for the shadow-price of capital and FEyp.y1 is the expected value of
the shadow-price for the subsequent time period. From the first optimality
condition, we infer that Fy1p;r2 = 1/Eiciy1, and therefore we resort to the
second optimality condition to present an equation of motion for the next
period expected per capita consumption level,

1+ adk G 6
1+p

Eicpp1 = ct (1)
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The perfect foresight steady state for the system composed by the capital
constraint and equation (1) is obtained by imposing k := k;y1 = k; and ¢ :=
Eiciy1 = ci41 = ¢ Straightforward computation conducts to the unique

_ 1/(1—a) _
steady state pair of values (k,¢) = [(%) Lp+(1- oa)é)k]. Un-

der perfect foresight, the system is saddle-path stable, i.e., if the one-dimensional
stable path is followed, the convergence towards the steady state point is
fulfilled.

Assume that expectations about the next period level of consumption
are formed through adaptive learning. Following Adam, Marcet and Nicol-
ini (2008), we consider an estimator variable b; such that Eici11 = bic.
The estimator is updated taking into account past information and using
the rule by = by—1 + oy (
to the gain sequence, as characterized in the introduction. We do not need
to explicitly model the time evolution of this variable because we will con-
centrate the analysis in the long run properties of the growth system. It
is simply necessary to know that if o, converges to zero (¢ = 0), a steady
state perfect foresight result is attained (i.e., the unique steady state point
is accomplished), while if o; converges to any positive value lower than 1,
then a less than optimal long run forecasting ability is evidenced (the higher
is 7, the lower will be the steady state quality of the forecasts).

Ct:; — bt—l), by given. Variable o, € (0, 1) respects

Ct

3 Linear Approximation in the Neighborhood of
the Steady State

The goal is to analyze local stability conditions, i.e., conditions under which
convergence to (k,¢) is accomplished, for a given pair (ko, co) close to equi-
librium. Working in the neighborhood of the steady state point, we linearize
the system of difference equations relating to the motion of capital and con-
sumption in order to attain stability conditions.

The linearization procedure is undertaken in two steps. First, we lin-
earize function F'(ky, c;) := Eyciy1/ce; this allows to write the estimator as a
linear function of the two endogenous variables, opening the way for explic-
itly presenting a system of capital-consumption equations defined in terms
of contemporaneous and past values of variables. Second, we linearize the
obtained system in order to build a Jacobian matrix from which stability
conditions are straightforward to derive.

Given the relation between expected consumption, present consumption
and the estimator, in the neighborhood of the steady state we can write:
by ~ 1+ Fp(k,©)(k — k)+ F.(k,¢)(c; — ¢). Straightforward computation
allows to find Fy(k,¢) = —(1—a)(p+6)/ k and F.(k,¢) = (1—a)(p+6)/((1+

p) k). Therefore, defining 6 := 1+ %’W(l —a)(p+0), one arrives to
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by~0—(1—a)(p+ 5)% +(1—-a) Efiig <. Replacing this expression in the
updating estimator rule, the following difference equation for consumption

is obtained,

et~ (1—oy)lecio1—(1+p)kia]+oi(ci1/z-1—0)+(1+p)k; 20 = i1 (2)

The second step of the linearization procedure consists in taking the
capital equation and the pair of equations (2) and evaluating them in the
neighborhood of the steady state. A three dimensional matricial system
emerges,

ki — k
ct —C ~
2t —¢C
14p -1 0 ke 1—k
(1+p)p+7) (1—-7)+7/c—(1+p) —-o/c | | ct-1—¢C (3)
0 1 0 2-1—¢C

4 Stability Condition

Let J be the 3x3 Jacobian matrix in (3). For this matrix, it is straight-
forward to compute determinant, sum of principle minors and trace. They
are all positive values: Det(J) = (14 p)Z > 0; SM(J) = (24 p)Z > 0;
Tr(J)=(1-3)+Z>0.

Stability conditions involving determinant, sum of principle minors and
trace of a three-dimensional linearized system are the following [see Brooks
(2004)]:

(i) 1 — Det(J) > 0;

(ii) 1 — XM (J) + Tr(J)Det(J) — (Det(J))? > 0;

(#5i) 1 —Tr(J)+XM(J) — Det(J) > 0;

(i) 1+ Tr(J)+XM(J) + Det(J) > 0.

In the specific case under analysis, we observe that XM (J) = Tr(J) +
Det(J) — (1 — 7). Thus, the stability conditions are reduced to:

(i) 1 — Det(J) > 0;

(ii) 2 — & — Tr(J) — Det(J) + Tr(J)Det(J) — (Det(J))? > 0;

(ii) & > 0;

(iv) @ + 2Tr(J) + 2Det(J) > 0.

Conditions (#4) and (iv) are verified for any values of parameters obeying
the imposed constraints. Condition (7) requires & < ¢/(1+ p) and condition

1+4(1+p)(c+p) & _ 1+4(1+p)(c+p)—1 & L
2(c+p) T <0 < 2+p) Tip Let ¢ =

(i1) implies —-

LHAEAErA) =L o dition (i) will be more restrictive than condition (i)

2(c+p)
if ¢ > 1. This last inequality would imply ¢ < 0, which is not a feasible
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outcome. Therefore, the first condition can be set aside and, hence, the
unique relevant stability condition is the upper bound of (i) (note that the
lower bound is below zero, and consequently it can be ignored). This result
is presented in the form of a proposition,

Proposition 1 In the neo-classical Ramsey growth model with expectations
generated through adaptive learning, stability holds under condition & <
oc/(1+p), with0 < ¢ < 1.

The result in proposition 1 is intuitive. It sets a boundary on learning
inefficiency or, in other words, it presents a minimum requirement in terms
of information acquisition and processing needed in order for the steady
state to be accomplished. As discussed in the introduction, assuming a
costly learning process, the representative agent does not need to employ
resources to attain @ = 0. She just has to apply a level of effort that is
enough to guarantee that 7 is close to, but below, ¢¢/(1 4+ p).

Proposition 2 briefly states the determinants of the learning boundary.

Proposition 2 The learning requirements are relaxed (i.e., the representa-
tive agent has to make less learning effort in order to reach the steady state
result) with a relatively higher level of technology and with lower depreciation
and discount rates.

The results in proposition 2 follow directly from observing that 9¢/0A >
0, 0¢/06 < 0 and 0¢/0p < 0 (and noticing that d¢/d¢ > 0).

To close the analysis, a numerical example is presented. The benchmark
values of parameters are o = 0.3, § = 0.05 (per year), p = 0.02 (per year).!
Parameter A is chosen to guarantee k = 1, i.e., A = 0.233. In this case,
¢ = 0.183 and the stability condition is & < 0.156. The gain sequence must
possess a steady state value lower than 0.156 in order to allow for stability
/ convergence to the steady state pair (k,¢) = (1,0.183).

Results in proposition 2 can be illustrated by varying some of the para-
meter values. In table 1, various experiments are displayed.

Parameter values* k [ Stability condition
6 =0.02 2.220 0.252 o < 0.205
6=0.1 0.462 0.139 o < 0.122
p=0.01 1.244 0.187 o < 0.160
p=0.05 0.600 0.170 o < 0.142
A=0.2 0.802 0.091 o < 0.082
A=05 2.971 0.545 o < 0.387

Table 1 - Stability condition for different values of parameters (*The other
parameters maintain the proposed benchmark values).

"These values are withdrawn from Barro and Sala-i-Martin (1995), pages 78-79.



Stability under Learning: the Neo-Classical Growth Problem

The stability conditions in the table confirm the results in proposition 2:
to attain stability, learning becomes more demanding when the depreciation
rate of capital is higher, the discount rate of future utility is higher and the
level of technology regresses.

5 Final Remarks

This note has derived an explicit, simple and intuitive stability condition
for the conventional Ramsey growth model when expectations about future
consumption are formed through adaptive learning. The relevance of the
result is that the representative agent may be boundedly rational (i.e., she
may not be able to treat information with the efficiency needed in order to
achieve a long run optimal forecasting capability), and still be able to attain
the intended long run locus (the unique steady state point). Nevertheless,
there is a clear boundary: after some threshold value of learning inefficiency,
stability is lost. A high technological capacity and low capital depreciation
and intertemporal discount rates allow to relax the learning constraint.
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