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Abstract

We show that very complicated dynamics arising, e.g. from an overlapping
generations model (OLG) with production and an endogenous intertemporal
decision between labour and leisure, which produces hyperchaos (both eigenval-
ues with modulus higher than 1), can in fact be controlled or managed with
relative simplicity. The aperiodic and very complicated motion that stems from
this model can be subject to control by very small perturbations in its parame-
ters and turned into a stable steady state or into a regular cycle. Therefore, the
system can be controlled without a change of its original properties. To per-
form the control of chaos in this economic model we apply the pole-placement
technique, developed by Romeiras, Grebogi, Ott and Dayawansa (1992).

The application of control methods to chaotic economic dynamics may raise se-
rious reservations, at least on mathematical and logical grounds, to some recent
views on economics which have argued that economic policy becomes useless in
the presence of chaotic motion (and thus, that the performance of the economic
system cannot be improved by public intervention, i.e., that the amplitude of
cycles cannot be controlled or reduced). In fact, the �ne tuning of the system
(that is, the control) can be performed without having to rely only on in�ni-
tesimal accuracy in the perturbation to the system, because the control can be
performed with larger or smaller perturbations, but neither too large (because
these would lead to a di�erent �xed point of the system, therefore modifying its
original nature), nor too small because the control becomes too ine�cient.

Keywords: Nonlinear Economic Dynamics, Chaos in OLG Models, Control
of Chaos



”Once we admit that an economy exists in time, that history �ows
from an irreversible past to an unknown future, the concept of equilib-
rium based on the analogy of a mechanic pendulum oscillating forth and
back becomes unsustainable. All traditional economics has to be radically
changed” (J. Robinson, 1973, 5, emphasis added)

”To prove the existence of chaos in any speci�c model is not a very
easy task, but its presence may have vast consequences both for economic
theory and policy. Just to mention two of them: if irregular �uctuations
depend on the structure of the system, rather than on external distur-
bances, intervention to eliminate or reduce them will have to change the
system rather than shield it from the shocks. Also if the behaviour of the
system is extremely sensitive to changes in initial conditions (and there-
fore to shocks), as it is known to be the case in most types of chaos,
e�ective ’�ne tuning’ becomes impossible, unless policy measures are in�-
nitely accurate.” (A. Medio, 1987, 336, emphasis added)

1 Introduction
In the �eld of economics, as the above words of Medio and Robinson illus-
trate quite well, there is a feeling among many economists that the advent of
chaos may produce a revolution in economic thought. This revolution would
be the ultimate stage to overthrow the largely dominant practice within con-
temporary economics in academia and in policy—making institutions, which is
based on the application of sophisticated mathematical tools to the analyses
of economic theory and policy. It would be based, apparently, on three major
points. Firstly, if modern economies are properly described as moving according
to chaotic motion, then they seem to be almost impossible to understand, to
predict, and to control using conventional or mathematical analytical methods.
This would render conventional economic theory and policy totally irrelevant
in contemporary economies. Secondly, any improvement on the functioning of
these economies requires a radical change to their basic structure, which should
be replaced by some alternative form apparently free from this type of motion.
Thirdly, modern economics based on its frequent use of mathematical tools is
missing the point because chaotic motion makes any accurate description of the
true model—economy through the language of mathematics impossible, at least
in the way this language has been used in the last forty years or so in the �eld
of economics.

In order to �nd appropriate solutions to the unsolved mysteries in eco-
nomic activity and to overcome the limitations of dominant analysis, some have
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strongly argued that economics needs a radical new approach. This new ap-
proach is based on a ”certain” view of chaos that seems to be crystallized by
the popular allegory of the butter�y e�ect, in which a system that follows a
chaotic motion is a process doomed to be totally out of order, totally out of
control and, therefore, completely unpredictable. In fact, this view is not in con-
tradiction with de�nitions of chaos that we may �nd in most dictionaries and
encyclopedias, even those above any suspicion of low intellectual standards.

Although there might be some positive points in this new view of economics,
in this paper we will argue that this view calling for a radical new approach seems
to be rather simplistic and subject to serious reservations because it is based
on a misconception of the fundamental characteristics of chaotic systems. This
misconception arises because this new view apparently remains highly depen-
dent upon the popular and romantic perspective of chaos that we have brie�y
highlighted above. It seems relatively super�cial with respect to the fundamen-
tal characteristics of chaotic systems and overlooks the fact that in the last ten
years or so there has been a remarkable amount of new results in the analysis
of chaotic systems.

In this paper we use a standard model in economics – an overlapping gen-
erations model with no bequests, and no taxation 1 – to show that chaotic
economic dynamics can be easily controled even if the model exhibits some of
the intricate forms of chaotic motion such as the one that has been named as
hyperchaos (both Lyapunov exponents higher than zero). The introduction into
this model of a constant relative risk aversion utility function and a linear Leon-
tief technology leads to chaotic motion, and to endogenous business cycles of
large amplitude as we shall see. The application of a small external perturbation
to one accessible parameter of the model leaves the fundamental characteristics
of the system unchanged – the �xed point that forms the basis of attraction
remains the same – changes the �xed point from an unstable into a stable one,
and eliminates those large business cycles (in other cases their amplitude may
be reduced).

The control method that we are going to apply is a well known feedback
control technique initially developed by Romeiras, Grebogi, Ott and Dayawansa
for chaos control (1992). They made the very important observation that a
chaotic attractor has embedded within it a dense set of unstable periodic orbits.
Since they wish to make only very small perturbations to the system they do
not envision creating new orbits with very di�erent properties from the existing
ones. Thus, they seek to exploit the dynamics of the already existing unstable
periodic orbits. This method uses a linear approximation to the dynamics in
the neighborhood of the desired periodic orbit, and consists in producing small
perturbations to a system—wide accessible parameter to stabilize all unstable
directions.

We are not aware of many papers in economics dealing with the process
of controlling chaotic models despite an already impressive amount of work

1Apart from the fact that transfer or bequests across generations would improve social
welfare (which would vindicate public intervention), there is no other theoretical reason to
justify the intervention of public agencies in the economic process in this model.
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on the modelling side of economic chaotic dynamics.2 Those which we have
come across include Holyst et al. (1996), who studied a chaotic process of a
dynamic game of two oligopolistic �rms, Kopel (1997) analyzed the control of
chaos in a model of evolutionary market dynamics, Kaas (1998) who applied
control to a non—optimal conventional macroeconomic model, and Bala et al.
(1998) who control chaos arising in the context of a tatonnement process of
exchange economies. All these papers perform the control of chaotic motion
using a di�erent technique – the OGY method which is appropriate for the
control of saddle point instability– and none of them controls the dynamics
that has been named as hyperchaos.

This paper is organized as follows. In section 2 we present the basic char-
acteristics of the overlapping generations model (OLG) with production and
optimal leisure choice, a model that has been extensively studied as a source
of generating chaotic motion. The model will have two basic characteristics:
constant relative risk aversion in utility and a Leontief technology. In section
3, the dynamics of the OLG model is studied in great detail, including stable
steady states, periodic motion, bifurcations and chaos. Section 4 deals with the
control of chaotic motion, and the process of control is achieved using a relative
risk aversion coe�cient. Section 5 concludes.

2 An Overlapping Generations Model
In an interesting paper, Medio and Negroni (1996) used the basic OLG frame-
work to study various combinations of utility and production functions that
would lead to chaotic behavior. These combinations include CES versus Leon-
tief (or �xed factor proportions) production functions and constant absolute
versus constant relative risk aversion utility functions. In this paper we use a
combination of a constant relative risk aversion (CRRA) utility function with
a Leontief technology (L) – from which the model’s shortname CRRAL stems
– to show that chaotic economic dynamics can be easily subject to control. All
other possible combinations of utility and production functions in the paper by
Medio and Negroni also lead to chaos. However, as in the control of chaotic dy-
namics each speci�c dynamics may require a particular technique, in this paper
we can only discuss one of those combinations due to shortage of space. For
example, in Mendes and Mendes (2001) we apply a di�erent technique to control
the chaotic dynamics that arises from a constant absolute risk aversion with a
Leontief technology (CARAL economy), which is based on the OGY method.3

We consider an overlapping generations model with production, where eco-
nomic agents live for two periods (young at �, and old age at �+1), and in which
there is an optimal intertemporal choice between labour and leisure: they work
only in the �rst period and they consume in both periods. We also consider that
there is a unique commodity in this economy which can be either consumed or

2For excellent surveys see, e.g., Benhabib (1992), Day (1999), Medio and Gallo (1995),
Brock and Hommes (1997), Barnett et al. (1999), Lorenz (1993), and Boldrin et al. (2000).

3 See Ott,Grebogi, andYork (1990).
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used in the production process as investment. Therefore, this economy has two
major agents: �rms that produce goods and services (by hiring labor and capi-
tal services) and maximize pro�ts, and families which maximize utility and rent
labour services in exchange for a wage rate.

Utility side. We will use the following designations: �� for the real wage
rate, ��+1 as the gross real interest rate, �1 (��) is the utility of consumption in
the �rst period, �2 (��+1) the utility of consumption in the second period, � (��)
the disutility of labour in the �rst period, 	� as the level of savings per person
in the �rst period. We assume that the functions �1
 �2
 � are continuous and
monotonously increasing on R+
 with �1
 �2 as concave and � as convex on R+�

The dynamic optimization problem can be written as

max � �1 (��) + �2 (��+1)� � (��)

	���
	� � ���� � ��

��+1 � ��+1	�

��
 ��+1
 	�
 �� � 0

(1)

Setting the Lagrangean for this optimal problem4

L = �1 (��) + �2 (��+1)� � (��) + 
 [(���� � ��)��+1 � ��+1]

The optimal problem for each family can be determined by the �rst order
conditions with respect to the three decision variables (��, ��+1, ��) and the
multiplier

�01 (��)� 
��+1 = 0 (2)

�02 (��+1)� 
 = 0 (3)

�0 (��) + 
���+1 = 0 (4)

(���� � ��)��+1 � ��+1 = 0 (5)

We shall proceed as follows to simplify this problem. Firstly, use equations
(4) and (5) to eliminate ��, and then obtain from the two �rst FOCs the result
��+1 = �01 (��) ��

0
2 (��+1). Finally, substitute this result for ��+1 into the �rst

step, and the optimal rule for intertemporal consumption and leisure over time
will appear as

�01 (��) �� + �02 (��+1) ��+1 � �0 (��) �� = 0 (6)

Assuming constant relative risk aversion in all utility functions

�1 (��) =
1

�
��� 0 � � � 1

�2 (��+1) =
1

�
���+1
 0 � � � 1

� (��) =
1

�
��� 
 � � 1

(7)

4Note that the two constraints can in fact be reduced to only one by cancelling ��.

4



the maximization of intertemporal utility in this CRRA framework leads to

��+1 =
¡
��� � ���

¢1��
� (8)

This is the �rst fundamental equation that characterizes the dynamics of this
model, and represents the optimal evolution of consumption, derived from the
consumer’s intertemporal choice of consumption and leisure.

Technological side. To obtain the second equation of our dynamic system,
we have to look at the technological side of the economy. We consider a linear
Leontief production technology

�� = min[���
 ����1] (9)

This equation assumes that output per person in period �
 (��)
 is obtained by a
linear combination of the amount of labour allocated to production in period �

(��), and the volume of capital accumulated in ��1, (���1). The two parameters
satisfy the following constraints: � = 1 for simplicity, and � � 1 for viability of
capital accumulation.

The assumption of full employment and the restriction � = 1 lead to the
result �� = ��. Moreover, the assumption of a constant capital/output ratio
leads to �� = ����1. Taking into account the equilibrium condition in the
product market, �� = �� + ��
 we obtain

�� = � (���1 � ���1) � (10)

Moving forward one period, and using the result �� = ��, we can obtain the
second fundamental equation that characterizes the dynamics of this OLGmodel

��+1 = � (�� � ��) 
 � � 1� (11)

Equations (8) and (11) represent the evolution of the system that is com-
patible with intertemporal optimization in constant relative risk aversion utility
and equilibrium conditions in a Leontief economy.

3 The Dynamics of the CRRAL Economy
We have the following nonlinear 2-dimensional map which characterizes the
overlapping generation model of a CRRAL economy

��
�

��+1 =
¡
��� � ���

¢1��
��+1 = � (�� � ��)

(12)

where � � 1
 � � 1
 0 � �
 � � 1 are the parameters of the system. Despite
its apparent simple form, the map presents an extremely complicated dynamic
behavior. Di�erent routes to chaos and lack of explicit analytical expressions
for equilibria are noted for this map.
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To compute the �xed points we have to solve the nonlinear system given by
��
�
¡
��� � ���

¢1��
= ��

� (�� � ��) = ���

(13)

There are two �xed points: the �rst one is the trivial �1 = (0
 0) 
 which is always
locally unstable, and the second one is �2 = (�� � 0
 �� � 1) which we cannot
compute explicitly but it was shown by Medio and Negroni (1996) that is strictly
positive.5 The equilibrium �2 is stable if satis�es the following conditions

����
���

1 + �� (� (�2)) +��� (� (�2)) � 0

1� �� (� (�2)) +��� (� (�2)) � 0

1���� (� (�2)) � 0

(14)

where � (�2) is the Jacobian matrix computed at the �xed point �2

� (�2) =

�
�� � �

�
���� �

�

μ
�

�� 1
¶��1

����

�� �

	

� (15)

and �� (� (�2)) is the trace of the Jacobian matrix. This is a well known
su�cient condition for the local stability giving the necessary and su�cient
conditions for the two roots 
1�2 of the characteristic equation to be inside the
unit circle of the complex plane. Since

�� (� (�2)) = � �

�
���� + �

��� (� (�2)) = (�� 1) �
�
+ [� (�� 1)� ��]

����

�

(16)

the stability conditions (14) imply that the �xed point �2 is stable if � is suf-
�ciently small, � is su�ciently large, or � is su�ciently small. In Figure 1 we
show the stability areas associated with the equilibrium �2 where the curve �1
denotes the condition 1���� (� (�2)) = 0 from relation (14), that is �

� =
1+�
2(��1) ,

and �2 denotes the discriminant expression (�� (� (�2)))
2� 4��� (� (�2)) = 0,

that is �
� =

(1+�)2

8(��1) .
The purpose of this paper is to control chaotic orbits and, therefore, we

should only be interested in the values of the parameters for which the map
shows chaotic behavior. We will choose the parameter’s values such that they
are located somewhere in the black bullets region in Figure 1 (complex conjugate
eigenvalues, unstable equilibrium), that is for �

� � 1+�
2(��1) �

5 In the paper of Medio and Negroni, the �xed point �2 is de�ned for (�� � 1� �� � 1) ,
when actually almost all of the values of the � coordinate computed here lie in the interval
]0� 1[�

6



b

� / �F2 F1 �

�

�

�

�

� �

� �

� �

�

�

�

��

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�
�

31 2

Real eigenvalues, 
stable equilibrium

Complex conjugate 
eigenvalues, stable 
equilibrium

� � �
Complex conjugate 
eigenvalues, unstable 
equilibrium

Figure 1: Stability of the equilibrium �2

As we are dealing with a nonlinear 2—dimensional map, and as the theoret-
ical tools to prove the existence of chaotic motion in 2—D are still very poor,
we do this resorting to computer numerical approximations. Without loss of
generality we �x � = � = 0�2
 � = 1�2 and assume that � can vary. We consider
the following initial conditions (�0
 �0) = (0�1
 1�16) situated in the basin of at-
traction and we start to study the behavior of the system when the parameter
� is varied in the interval ]1
 1�73[.

Generically, when the control parameter varies, a periodic solution can lose
stability through various types of bifurcations and the resulting solution depends
on how the multipliers leave the unit circle. Recalling Figure 1, we realize that
starting from a stable con�guration and increasing � we have to pass through
the boundaries delimited by �1 and �2, and so, loss of stability (boundary �1)
takes place through a Neimark-Sacker bifurcation. The Neimark-Sacker bifur-
cation (or secondary Hopf bifurcation) is a local bifurcation which produces a
qualitative change in some neighborhood of the �xed point when a pair of com-
plex conjugate eigenvalues leaves the unit circle away from the real axis and, as
a consequence, an invariant closed curve (circle) is bifurcating for some value of
�, say ��
 around the �xed point. This (unique) invariant circle occurs if certain,
rather general, nonresonance conditions hold for the normal form of the system.
We assume that these conditions 6 are satis�ed here and for a rigorous proof

6A Neimark-Sacker bifurcation or Hopf bifurcation for maps is characterized by the follow-
ing: given a parameter dependent map on R�� 	 � 2� 
 7�� � (�)
+
 (
� �) with

(N1) 
 is a ��-smooth mapping, � � 2� from R
�×R into R�, 
 (0� �) = 0� 
� (0� �) = 0� � �

R

(N2) � (��) has a complex conjugate pair of eigenvalues with modulus 1, i.e., |�1�2| = 1�
while all other eigenvalues have modulus strictly less than one

(N3) �0 (��) 6= 0� where � (�) is the modulus of the branch of eigenvalues with � (��) = 1�
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of existence of Neimark-Sacker bifurcations for generic 2-dimensional maps, we
refer to Kuznetsov (1998).

Along this process we numerically encounter a multitorus (or torus break-
down) route to chaos. In this route to chaos, a torus attractor bifurcates into
periodic orbits of consecutively increasing (decreasing) periods, i.e., windows of
quasi periodic and periodic behavior appear alternately as the parameter � is
changed. After several such bifurcations, a periodic orbit �nally bifurcates into
a chaotic attractor. These various results will be discussed and illustrated by a
large set of �gures in the remaining part of this section.

The Neimark-Sacker bifurcation takes place for � = 1�1 and for values lower
than � = 1�1 a stable equilibrium exists. We start with an initial value of
the control parameter, let us say � = 1�098� As the analysis above indicates
this value leads to a stable equilibrium point, and the attractor of this type
of equilibrium is represented graphically in Figure 2. Both variables of the
dynamic system (�� and ��, respectively, consumption and labour services per
person) converge towards a unique and stable point independently from the
initial state of the economy. The equilibrium point is characterized by the
optimal intertemporal values �� = 0�2419, �� = 1�4518� The eigenvalues of the
Jacobian matrix computed at the equilibrium point are 
1�2 = 0�0999± 0�9929�
with |
1�2| �= 0�9960� This dynamic process can also be represented by the time
series of both variables, which are also shown in Figure 2. As we can easily see
both converge steadily and cyclically towards their steady state values.

As we have already mentioned the Neimark-Sacker bifurcation takes place for
� = 1�10
 bifurcation value obtained from the stability condition �

� =
1+�
2(��1) � For

this parameter value, the equilibrium point occurs at �� = 0�2417, �� = 1�4506
and the associated pair of complex conjugate eigenvalues are 
 = 0�1000±0�9949�
with |
| �= 1�0000
 which shows that varying the parameter � from 1�098 to
1�1
 the eigenvalues are approximating the unit circle and the equilibrium is
changing its stability properties through a Neimark-Sacker bifurcation. Figure
3 illustrates the phase plot and the coordinates time series for the bifurcation
value of ��

Continuing to increase the value of �, we see what happens for � = 1�11. The
coordinates of the equilibrium are �� = 0�2407, �� = 1�4447 and the associated
eigenvalues are 
 = 0�0999 ± 1�0049�� The modulus of the complex conjugate
eigenvalues is |
| �= 1�020, and so we can conclude that the equilibrium became
unstable and an invariant closed curve was created around the �xed point, which
is shown in the Figure 4 together with the time series of the two state variables
in this control problem. As one would expect from a quasi periodic motion,
the phase plot is in the form of a smooth closed curve (the cross section of a
two-torus).

As � is further increased, however, the phase plot starts to fold and –
interrupted by periodic windows – a quasi periodic transition to chaos takes

Under the above hypotheses the map has an invariant closed curve of radius �
��|�� � �|

�

surrounding the origin for all � in a one-side neighborhood of ��� The closed curve is attracting
(repelling) if zero is an asymptotically stable (unstable) �xed point of the map at � = ���
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Figure 2: � = 1�098
 the stable �xed point before the Neimark-Sacker bifurcation
occurs.

Figure 3: � = 1�10, the Neimark-Sacker bifurcation
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Figure 4: � = 1�11
 the stable invariant closed curve around the �xed point
created after the bifurcation
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Figure 5: � = 1�316
 the breakdown of the invariant closed curve

place. We can see that the ”circle” after being stretched, shrunk and folded
creates a new phenomena: the breakdown of the invariant closed curve (see for
instance Figure 5), which leads to the appearance of various invariant closed
curves. Looking at the time series of the state coordinates, we can observe an
expansion in the windows associated with each of the two sequences.

For � � 1�32 we obtain multiple invariant closed curves brought by Neimark-
Sacker bifurcations of iterates of the original map. In these cases, the dynamics
from one circle to another are periodic (and thus easily predictable), but the dy-
namics on each closed curve, may be periodic or quasi periodic. Moreover, these
closed curves may break, leading to multiple fractal tori on which the dynamics
are chaotic. Following the Neimark-Sacker bifurcations, quasiperiodic solutions
with windows of frequency locking appear. The radius of the quasiperiodic so-
lution grows as � is further increased. Figure 6 represents seventeen invariant
closed curves brought about by a Neimark-Sacker bifurcation of the 17th iterate
of the map of the system, obtained for � = 1�362� Following our procedure, we
also present the time series associated with each of the coordinates which shows
very clearly the quasi periodicity of the orbits.

The bifurcation diagram of the � coordinate, also shows all the remarkable
phenomena that we have been describing (see for instance Figure 7). It is easy
to realize that the stable �xed point bifurcates into an invariant closed curve
(dense region in the bifurcation diagram), and after two windows (the �rst
between 1�32 and 1�37
 and the second between 1�46 and 1�5) where periodic

11



Figure 6: � = 1�362
 the existence of multiple invariant closed curves

orbits bifurcate once again through Neimark-Sacker bifurcations into multiple
invariant closed curves, chaotic motion is �nally obtained.

A strange attractor is produced by successive stretching and folding. The
attractor in Figure 8 is a bounded region in the phase space to which all su�-
ciently close trajectories are asymptotically attracted for a long enough period
of time. While individual trajectories are chaotic, the chaotic attractor reveals
information about the long-term trends of the system. The stretching causes or-
bits on the attractor to exhibit sensitive dependence on initial conditions (chaos)
and the folding causes the fractal (strange) structure. The impressive structure
appearing for � = 1�38 is chaotic and is represented with the associated time
series of the coordinates in Figure 8. The time series change from the quasi
periodic shape that we have already encountered in previous simulations to a
totally ”random” shape. The equilibrium is �� = 0�22134
 �� = 1�32806 and the
eigenvalues are 
1�2 = 0�1000± 1�2449� with |
1�2| �= 1�559� The strange attrac-
tor is produced by the breaking of the invariant circles and the appearance of
the seventeen chaotic regions changes as they are linked into a single chaotic at-
tractor. Full developed chaos occurs also for � = 1�68
 after passing the second
window of multiple Neimark-Sacker bifurcations for the iterates of the original
map (see Figure 9). The fractal structure of the attractors is evident in both
cases.

Lyapunov exponents are a dynamic measure of chaos that average the sepa-
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Figure 7: Bifurcation diagram for the � state coordinate

Figure 8: � = 1�38
 chaotic trajectory
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Figure 9: � = 1�68 full developed chaos

ration of the orbits of nearby initial conditions as the system moves forward in
time. The chaotic attractor displayed in Figure 9 has both Lyapunov exponents
positive, computed to be approximately equal to 0�19 and 0�13 respectively.
These Lyapunov exponents are represented in Figure 10. They are both larger
than zero and the complex conjugate eigenvalues are situated outside the unit
circle which indicates that we are actually dealing with a very complex phenom-
enon known as hyperchaos.

4 Controlling Chaotic Economic Motion
In principle the control of chaotic systems does not di�er from the control of
general nonlinear systems. However, there is a substantial di�erence which was
elegantly summarized by Mees (1998): ”if we ask the right sort of questions,
questions that may di�er from those normally asked by a control theorist, we
may be able to get a chaotic system to do something desirable with rather little
control e�ort on our part. I call this control by smart butter�ies, because of the
infamous butter�y e�ect, which says that chaotic systems are sensitive to small
changes” (1998, vii). That is, conventional classical control techniques control
the dynamics of nonlinear processes through the use of brute force, having in
fact frequently to change the nature of the very system that is subject to control
because these systems are not sensitive to small changes in their parameters.
However, in the case of chaotic systems, as these are sensitive to very small
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Figure 10: Convergence of the two positive Lyapunov exponents.

changes in the parameters, a small butter�y e�ect in one of them is (in most
cases) all that is required to control their outcome, without changing the very
nature of the controlled system in any relevant way. In short, if a chaotic
system has an unstable �xed point, the control procedure turns this unstable
point into a stable one, by a very small perturbation, leaving the system’s initial
fundamental characteristics untouched.

In general, the techniques for feedback control of chaos presented thus far
in the literature have some common features which we will brie�y summarize.
The control is usually designed for parameter values where the system is known
to exhibit chaotic motion, and is typically of the form � = � (�� ��) where � is
the system state vector, and �� is an unstable equilibrium of interest, which lies
on a chaotic attractor. The control function � is not necessarily smooth. Thus,
when an input is altered on the basis of the di�erence between the actual output
of the system and the desired output, the system is said to involve feedback.
Note that �� can also be a periodic orbit. The Ott-Yorke-Grebogi method
(OGY method) (1990) and the pole-placement technique (see Ogata (1997) and
Romeiras et al. (1992)) belong to feedback control. The pole-placement method
extends that of OGY, allowing for a more general choice of the feedback matrix
and implementation to higher-dimensional systems.7

In what follows we will apply the pole-placement method to the CRRAL eco-

7See Mendes and Mendes (2001) for control of chaotic motion in a OLG economic model
with the OGY method.
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nomic model that we have been discussing along this paper and we stabilize an
unstable period-one orbit embedded in the chaotic attractor. By applying small,
adequate chosen temporal perturbations to an accessible control parameter of
the dynamical system, the original chaotic trajectory can be converted into the
desired �xed point. The control parameter that we will use is the disutility of
labor relative risk aversion coe�cient, �.

4.1 Controlling through � by pole-placement technique

It was shown numerically in the previous section that for � = 1�38
 � = 1�2

� = � = 0�2 the system exhibits a chaotic attractor (Figure 8). We �x these
parameter values and consider that � is the control parameter which is avail-
able for external adjustment but is restricted to lying in some small interval
|� � �0| �  
  � 0 around the nominal value �0 = 1�38� The system becomes:��

�
! : ��+1 =

¡
��� � �0	2�

¢1�0	2
" : ��+1 = 1�2 (�� � ��)

(17)

We vary the control parameter � with time � in such a way that for almost
all initial conditions in the basin of the chaotic attractor, the dynamics of the
system converge onto a desired time periodic orbit contained in the attractor.
The control strategy is the following: we �nd a stabilizing local feedback control
law which is de�ned in a neighborhood of the desired periodic orbit. This is
done by considering the �rst order approximation of the system at the chosen
unstable periodic orbit. The ergodic nature of the chaotic dynamics ensures
that the state trajectory eventually enters into the neighborhood. Once inside
the neighborhood, we apply the stabilizing feedback control law in order to steer
the trajectory towards the desired orbit.

In this case we consider the stabilization of the unstable period-one orbit �2 :
(��
 ��) = (0�2213
 1�3280) � The map can be approximated in the neighborhood
of the �xed point by the following linear map,�

� ��+1 � ��

��+1 � ��

	
� �= #

�
� �� � ��

�� � ��

	
�+$[� � �0] (18)

where

#(2×2) =

�
����

%! (��
 ��)
%��

%! (��
 ��)
%��

%" (��
 ��)
%��

%" (��
 ��)
%��

	



� and (19)

$(2×1) =

�
����

%! (��
 ��)
%�

%" (��
 ��)
%�

	



� (20)
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are the Jacobian matrixes with respect to the control state coordinates (��
 ��)
and to the control parameter �. The partial derivatives are evaluated at the
nominal value �0 and at (��
 ��) � In our case we get

�
� ��+1 � 0�22

��+1 � 1�32

	
� �=

�
� �1�0 2�29

�1�2 1�2

	
�
�
� �� � 0�22

�� � 1�32

	
�+

�
� 0�62

0

	
� [� � 1�38] (21)

Next, we check whether the system is controllable. A controllable system is
one for which a matrix &(1×
) can be found such that #�$& has any desired
eigenvalues. This is possible if rank(') = (
 where ( is the dimension of the
state space, and

' = [$ : #$ : #2$ : ��� : #
�1$]� (22)

In our case it follows that

' = [$ : #$] =

�
� 0�62 �0�62

0 �0�75

	
� (23)

which obviously has rank 2
 and so we are dealing with a controllable system.
If we assume a linear feedback rule (control) for the parameter � of the form

[� � �0] = �&

�
� �� � ��

�� � ��

	
� (24)

where &(1×2) := [)1 )2]
 then the linearized map becomes

�
� ��+1 � ��

��+1 � ��

	
� �= [#�$&]

�
� �� � ��

�� � ��

	
� (25)

that is�
� ��+1 � 0�22

��+1 � 1�32

	
� �=

�
� �1�0� 0�62)1 2�29� 0�62)2

�1�2 1�2

	
�
�
� �� � 0�22

�� � 1�32

	
� (26)

which shows that the �xed point will be stable provided that the (2× 2)-matrix
#�$& is asymptotically stable, that is, all its eigenvalues have modulus smaller
than one. The eigenvalues *1
 *2 of the matrix #�$& are called the ”regulator
poles” and the problem of placing these poles at the desired location by choosing
& with #
$ given is the ”pole-placement problem”. If the controllability matrix
' from equation (22) is of rank (
 ( = 2 in our case, then the pole-placement
problem has a unique solution. This solution is given by

& = [�2 � �2 �1 � �1]�
�1 (27)
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where � = '+ and

+ =

�
� �1 1

1 0

	
� =

�
� �0�20 1

1 0

	
� �

Here {�1
 �2} are the coe�cients of the characteristic polynomial of #, i.e.,

|#� 
,| = 
2 + �1
+ �2 = 
2 � 0�20
+ 1�559
� �1 = � (
1 + 
2) = �0�20
 �2 = 
1
2 = 1�559

and {�1
 �2} are the coe�cients of the desired characteristic polynomial of #�
$&, i.e.,

|(#�$&)� *,| = *2 + �1*+ �2

� �1 = � (*1 + *2)

� �2 = *1*2

From equation (27) we get that

& = [*1*2 � 1�559 � (*1 + *2) + 0�20]

�
� 0 �1�32

1�59 �1�59

	
�

= [�1�59 (*1 + *2) + 0�318 � 1�32*1*2 + 1�59 (*1 + *2) + 1�752]�

Since the 2-D map is nonlinear, the application of linear control theory will
succeed only in a su�ciently small neighborhood - around (��
 ��) � Taking into
account the maximum allowed deviation from the nominal control parameter �0
and equation (24)
 we obtain that we are restricted to the following domain

.� =

��
�(��
 ��) � R2 :

¯̄̄
¯̄̄&
�
� �� � ��

�� � ��

	
�
¯̄̄
¯̄̄ �  

�

� � (28)

This de�nes a slab of width 2 � |&| and thus we activate the control (24) only
for values of (��
 ��) inside this slab, and choose to leave the control parameter
at its nominal value when (��
 ��) is outside the slab.

Any choice of regulator poles inside the unit circle serves our purpose. There
are many possible choices of the matrix &� In particular, it is very reasonable to
choose all the desired eigenvalues to be equal to zero and in this way the target
would be reached at least after ( periods, and, therefore, a stable periodic orbit
is obtained out of the chaotic evolution of the dynamics.

The time e�ciency in the control process is another issue that can also be
considered. Romeiras et al. (1992) investigated numerically which choice of
the feedback matrix & exhibits the shortest stabilization time. Because the
linearized equation (25) does not take into account any nonlinearity that is part
of the original chaotic system, the control may not be able to bring the orbit
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to the �xed point, despite the fact that it is already in the slab. In this case,
the orbit will leave the slab and continue to wander chaotically as if there were
no control. Since the orbit on the uncontrolled chaotic attractor is ergodic, at
some time it will eventually satisfy the condition (28) and also be su�ciently
close to the desired �xed point so that control is achieved. Thus, a stable
orbit is created, which for a typical random initial condition, is preceded by a
chaotic transient in which the orbit is similar to other orbits on the uncontrolled
chaotic attractor. The length / of such chaotic transient depends sensitively on
the initial conditions of the particular orbit. For initial conditions randomly
chosen in the basin of attraction, the distribution of chaotic transient lengths is
exponential

0 (/) =
1

h/i exp
μ
� /

h/i
¶

for large / � The quantity h/i is the characteristic length of chaotic transient,
called in the present case the average time to achieve control.

The transient phase where the orbit wanders chaotically before control be-
ing applied can be shortened by applying the targeting technique proposed by
Shinbrot et al. (1990). It was pointed out that orbits can be rapidly brought to
a target region on the attractor by using small control perturbations when the
orbit is far from the neighborhood of the periodic orbit to be stabilized. The
idea is that, since chaotic systems are exponentially sensitive to perturbations,
after some time these perturbations produce a large e�ect on the orbit location
and can be used to guide it.

4.2 Numerical examples

Two cases will be illustrated. Firstly, we consider di�erent values of )1 and )2
and �x a certain orbit initiated at a particular point in the basin of attraction.
As we will see, the controlled orbit will converge towards the �xed point but
takes di�erent periods of time in order to fully accomplish that convergence,
depending on the values of )1 and )2. Secondly, the chaotic trajectory will also
converge to the �xed point if, in contrast, we consider �xed values of )1 and
)2 and randomly choose some initial conditions. In all examples we iterate the
system for 100 iterations until the chaotic behavior is perfectly evident and the
iterates are distributed over the attractor and then apply the control strategy
when the orbit is inside the slab. After this time point the system is forced to
follow the desired orbit.

In Figure 11 we show the time series of the chaotic trajectory initiated at
the point (�0
 �0) = (0�320
 1�427) which we have chosen to control. In contrast,
Figure 12 presents the controlled orbit converging to the stabilized �xed point
when the feedback matrix & is chosen such that the eigenvalues of (#�$&) are
*1 = *2 = 0� This implies that *1+*2 = 0
 *1*2 = 0 and so & = [0�318 1�752]�
For this control strategy we have also chosen  = 0�1�

For & = [�1�28 3�01] the motion will converge to the stable orbit of period
one which is shown in Figure 13. The matrix #�$& has a pair of real eigenval-

19



0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

c

0 50 100 150 200 250 300
1

1.1

1.2

1.3

1.4

1.5

l

Figure 11: Original chaotic orbit
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Figure 12: Controlled chaotic orbit for  = 0�01 and & = [0�3184 1�7528]
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Figure 13: Controlled orbit for  = 0�1 and & = [�1�28 3�01]

ues equal to *1 = *2 = 1�2� The linear control is activated for theses values and
for the time index 100� After switching on the control, the orbit continues to
exhibit chaotic behavior for some time, unchanged from the uncontrolled case,
because it is not close enough to the �xed point. After some steps, this is elim-
inated and the orbit is rapidly brought to the �xed point. We can observe that
in this case, the orbit to enter the slab and the control to be achieved both will
take a longer time span to be accomplished in comparison to the �rst example.

In what follows, we will place the poles such that & = [0�318 1�752] and
will consider randomly chosen initial conditions. Figures 14, 15 show clearly
that the chaotic transient depends sensitively on the initial conditions of the
particular orbits.

For  = 0�1 and randomly chosen initial conditions, the pole placement
control strategy works very well for this system. Exhaustive numerical exper-
imentations show that almost all initial conditions lead to controllable orbits
and the time to achieve the control is no longer than 100 iterates. For � = 1�68

� = 1�2
 � = � = 0�2 analogous control results were obtained.

Further numerical experimentations were done. For an external adjustment
such that the interval in which the control parameter can vary is smaller than
in the previous examples, e.g., for  = 0�01
 and for randomly chosen initial
conditions, the control strategy still works very well. However, as one would
expect the time span needed to stabilize the randomly chosen trajectory is
much larger because of the smaller value for  . In Figure 16 we show that it
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Figure 14: Control of a randomly chosen trajectory for  = 0�1�
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Figure 15: Control of a randomly chosen trajectory for  = 0�1�
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Figure 16: Control of a randomly chosen trajectory for  = 0�01�

takes around 125 periods to have a randomly chosen trajectory under control
for this case. However, for other initial conditions, the time span required to
achieve control becomes much larger.

5 Concluding Remarks
We have applied the pole-placement control technique to an overlapping genera-
tions model with production and an endogenous intertemporal decision between
labour and leisure. It was shown that the aperiodic and complicated motion that
arises from the dynamics of the model can be easily subject to control by small
perturbations in its parameters and be turned into a stable steady state. This
simple exercise may raise serious reservations to the recent views sustaining that
economic policy becomes impossible or useless in the presence of chaotic motion,
at least on purely logical and mathematical grounds.

Two major points should be stressed due to their potencial relevance for
economics. Firstly, and contrary to the view of Medio in the opening quotation,
the �ne tuning of the system (that is, the control) can in fact be performed with-
out having to rely only on in�nitesimal accuracy in the perturbation process,
because the control can be performed with larger or smaller perturbations, but
neither too large (because these would change the chaotic initial �xed point,
modifying therefore the nature of the system), nor too small because the con-
trol becomes too ine�cient. In this paper we assumed that � was the control
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parameter which was available for external adjustment and was restricted to lie
in some small interval |� � �0| �  
  � 0 around the nominal value �0 = 1�38�
Two values for  were considered:  = 0�1 and a much smaller interval  = 0�01.
In both cases the control was easily achieved using either randomly or arbitrarily
chosen initial conditions.

Secondly, the fundamental characteristics of the model are not changed by
the control procedure as the �xed point that forms the basis of attraction
remains the same – all that is changed is its stability properties, from unstable
to a stable one – and the large cycles are eliminated. Therefore, instead of
rendering economic policy useless, chaotic motion may in fact even vindicate
the intervention of public agencies in models where such intervention would not
be largely justi�ed in accordance with conventional theory.

In our opinion, these seem relevant arguments to question the view which
sustains that if modern economies are properly described as moving according
to chaotic motion, then they seem to be almost impossible to understand, to
predict, and to control by using conventional analytical or mathematical meth-
ods. This view would render conventional economic theory and policy totally
irrelevant in contemporary economies. Moreover, the possibility of obtaining rel-
evant positive knowledge of chaotic economic systems (that is, creating abstract
mathematical models and testing them on empirical and numerical grounds) is
not strictly con�ned to the remarkable result that arises from controlling chaotic
dynamics as we show in this paper. Research in the predictive power of non
linear time series also con�rm this possibility.

Therefore, contrary to the view of Medio and Robinson presented in the
past, this means that if economic reality behaves in accordance with the laws of
chaos, there still seems to exist plenty of room for improvement of the system’s
performance, and for relative stability through the implementation of economic
policy, without having to throw away the very nature of the system. In fact,
recent developments in the �eld of chaotic systems have made clear that many
chaotic dynamics can be largely understood by rational and mathematical tools
(in terms of the nature of the processes that are behind these dynamics), can
be controlled and can be predicted as well.
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