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Abstract

In a series of papers, Benhabib, Schmitt-Grohé and Uribe (2001a,
2001b, 2001c, 2002 and 2004) have shown that active interest rules
may lead to very unexpected consequences: indeterminacy, de�ation
traps, large cyclical instability, and can even lead to chaotic dynam-
ics under standard sets of parameter values. This paper explores
this particular model model and puts forward four basic points: (i)
the model developed by Benhabib and associates seems to su�er
from serious drawbacks to be used as a theoretical benchmark to
guide optimal monetary policy, as the more aggressive the central
bank becomes, the more unstable the economy will be; (ii) the time
span required to achieve successful control is generally small, by
linear feedback techniques – the OGY method – without produc-
ing modi�cations to the original model, apart from locally changing
its type of stability; (iii) ignorance about the true state of initial
conditions are not a serious impediment to obtain control of the
chaotic dynamics in the model; (iv) we argue that the conventional
view of economic policy in nonlinear general equilibrium models
– when endogenous �uctuations exist in optimizing models, the
associated policy advice is laissez—faire – seems to be based on a
misconception of chaos in general, and on the control of chaos in
particular.
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"Grandmont [1985] argues that such deterministic cycles provide an alter-
native to the linear stochastic process view of cycles. If he is correct, policy
can have very drastic e�ects on the dynamics of the economy by changing the
speci�c form of nonlinearity."

Blanchard and Fisher (1989, 261).

The fact that the solutions are chaotic does not alone provide any justi�ca-
tion for government intervention, and indeed any such intervention could produce
a stable, but Pareto inferior solution. [Therefore] the existing theoretical results
on chaos have no policy relevance, since in chaotic models the justi�cation for
intervention always can be identi�ed with a form of market failure entered into
the structure of the model, and hence the chaos is an independent and policy-
irrelevant feature of those models. (page 44)

Barnett, Medio and Serlettis (1999)

1 Introduction

One of the most interesting facts in the �elds of economics and �nance
over the last two decades consists of the �nding that many simple dynamic
general equilibrium models, using the most standard and innocuous as-
sumptions, may lead to very complex dynamics, ranging from indetermi-
nacy, large cyclical instability, and even bifurcation and route to chaos.
These results are obtained in models where the economy has agents as-
sumed to have rational and homogeneous expectations (or perfect fore-
sight, depending on the case) and informationally e�cient markets. Ex-
cellent surveys of this literature can be found in Brock (1997), Benhabib
(1992), Boldrin and Woodford (1990), Guesnerie and Woodford (1992),
and more recently those of Barnett et al. (1999) and Nishimura and
Sorger (1999), among others.

However, the potentiality for very complex behavior becomes signif-
icantly increased if heterogenous agents and di�erent learning processes
are also taken into account in the modelling of dynamic economic processes
(e.g., Brock and Hommes, 1998; Chiarella and He, 2000; Evans and
Honkapohja, 2001 and Saari 1996), or if we abandon the rather restrictive
�eld of dynamic general equilibrium models. Nonoptimal dynamic mod-
els in the spirit of the early literature on business cycles, following the
early contributions of Kaldor, Hicks or Goodwin, free from the standard
representative optimal agent, are prone to produce irregular dynamics
and chaos. See, eg., Puu (2000), Barkley Rosser (2004), Day (2000) and
Goodwin (1992).

From the already impressive amount of literature on endogenous cy-
cles and chaotic dyamics in economics, there are two major points that
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should be stressed. Firstly, on the positive side of economic analysis,
it became widely accepted that it is relatively easy to generate chaotic
dynamics in macroeconomic models, eventhough this may come with a
cost in some cases (relatively implausible parameter values) in highly ag-
gregative models. At a time when rational expectations and real business
cycles apparently dominated the �eld of macroeconomics, it came as a
surprise that even the most strong versions of perfectly competitive mar-
kets could not produce the well behaved economic outcome that we learn
in dominant textbooks.

Secondly, it is interesting to note that on the normative side we are
not aware of an extensive literature dealing with the process of controlling
chaotic economic dynamics (or some of control useful for economic pol-
icy), despite the understandable great importance of this type of control
for analyzing the power of policy in nonlinear economic systems. In fact,
the issue of economic policy was one of the fundamental points initially
raised when chaotic dynamics started to be frequently and seriously dis-
cussed within the �eld of economics, as the sentence by Grandmont above
shows very clearly.

The �rst strand of literature applying chaos control to economics in-
cludes papers which deal essentially with the study of dynamic oligopolis-
tic games in a partial equilibrium framework. These include those of
Holyst et al. (1996) and (2001), Kopel (1997) and more recently Mat-
sumoto (2004). In the area of macroeconomics, Kaas (1998) applied con-
trol to a non—optimal conventional macroeconomic model and advised in
the conclusion about the perils of applying control methods to optimal
competitive frameworks.

None of these papers discusses the control of chaotic motion arising
from a general equilibrium optimal dynamic process because it has be-
come widely accepted in the economics profession that chaotic dynamics
does not bring any new novelty to the analysis of economic policy to con-
trol business cycles. For example, Bullard and Butler (1993) and Barnett
et al (1999) – see one of the opening sentences above – argue force-
fully that whenever agents optimize in a dynamic general equilibrium
setting, and there are no market imperfections or incompleteness, if the
result is chaotic dynamics with large and irregular cycles, the maximiza-
tion of social welfare implies that the best policy is no activist policy at
all. Therefore, following this argument, the power and beauty of chaotic
dynamics brings no new secrets to the continual struggle of mankind to
improve the way economic structures evolve over time.

More recently, a new strand of papers have tried to attack this issue.
These include, on the side of �scal policy, the papers by Guo and Lansing
(2002) and (2004), Seegmuller (2003), Christiano and Harrison (1998),
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Augeraud-Veron and Augier (2001), and Aloi, Jacobsen and Loyd-Braga
(2001). Airaudo and Zanna (2004) deal with optimal monetary policy
and Wieland and Westerho� (2004) with chaos in exchange rate models.
Despite the interesting aspects of all the papers above concerning the
role of policy to control endogenous �uctuations, the only papers that in
fact use the techniques of chaos control are those of Guo and Lansing,
Aloi et al. and Wieland and Westerho�. Airaudo and Zanna try to give
an answer to the problem of controlling endogenous �uctuations in an
optimal monetary policy framework, but in fact, they rule out chaotic
dynamics by imposing a much larger perturbation than the one which is
su�cient if we apply the techniques of chaos control.

In this paper we hope to clarify some issues related to the use of
chaos control to reduce or eliminate business cycles. We do so by dis-
cussing chaotic dynamics in an optimal monetary model that has been
studied in great detail by Benhabib et al. (2002). In particular, we make
four basic points: (i) the model developed by Benhabib and associates
su�ers from serious drawbacks to be used as a theoretical benchmark to
guide optimal monetary policy; (ii) the time span required to achieve
successful control is generally small; (iii) ignorance of initial conditions
are not a serious impediment to obtain control of the chaotic dynamics in
the model; (iv) we argue that the conventional view of economic policy
in nonlinear general equilibrium models – as the sentences above by
Barnett et al. (1999) and Bullard and Buttler (1993) show very clearly
– is based on a misconception of chaos in general, and on the control of
chaos in particular.

The paper is organized as follows. In section 2, the dynamics of an
optimal monetary policy model is studied in some detail, including stable
steady states, periodic motion, bifurcations and chaos. Section 3 deals
with the control of chaotic motion, and section 4 discusses the relevance
of this type of control for economic policy. Section 5 concludes.

2 Optimal Monetary Policy and Endogenous Cy-
cles

Since the early 1990s we have witnessed an increasing consensus in the
conduct of modern monetary policy. Goodfriend and King (1997) have
labelled this new consensus as "The New Neoclassical Synthesis and the
Role of Monetary Policy", while Clarida, Gali and Gertler (1999) called
it the "The Science of Monetary Policy: A New Keynesian Perspective".
This new framework is a natural extension of the seminal idea developed
by Taylor (1993), in which the central bank should conduct monetary
policy through an aggressive and publicly known rule (Taylor Rules).
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The central elements of this consensus are that:

• the crucial instrument of monetary policy ought to be the short
term interest rate,

• policy should be focused on the control of in�ation,

• in�ation can be e�ciently controlled by an aggressive increasing of
short term interest rates,

• the central bank should conduct monetary policy adopting a strat-
egy of commitment in a forward-looking environment (instead of
discretion).

The fundamental objective of monetary policy in the framework above
presented (or in any other one, we guess) is to reduce as much as pos-
sible the amplitude of business cycles, and by doing so increasing eco-
nomic welfare. A huge amount of literature on Taylor rules seem to
have con�rmed the theoretical attractiveness of such rules, but also the
empirical relevance of them. However, over the last two/three years, Ben-
habib, Schmitt-Grohé and Uribe have shown in a series of papers (2001a),
(2001b), (2001c), (2002) and (2004) that active interest rules may lead
to very unexpected consequences: indeterminacy, de�ation traps, large
cyclical instability, and even chaotic dynamics.

In their (2002) paper Benhabib and associates raise two fundamen-
tal ponts. Firstly, that under both active forward looking and active
contemporaneous looking interest rate rules the calibration of the model
lead to chaotic dynamics. Secondly, they show that the widely used local
analysis of applying log linearization techniques around the steady state
may produce wrong conclusions about the stability of the model under
consideration. Finally, they leave the problem of policies to remedy the
problem of endogenous cycles for further research.

2.1 The model

The model has the basic ingredients of a dynamic general equilibrium
model in a discrete time framework. It is assumed for analytical conve-
nience that besides households the only other agent in the model is the
government (or a central bank).

There is a large number of households which maximize their lifetime
utility given by the following utility function

�X
�=0

�� �
1��
�

1� �
(1)
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in which, �� stands for real consumption, and (�� �) are parameters obey-
ing the usual restrictions: � � 0 and �(0� 1)�

The government prints money (��) and sells bonds to families (	�).
This leads to a budget constraint of the representative agent of the form

�� +	� + 
��� + 
�� � =���1 +���1	��1 + 
�
� (2)

where 
� stands for the price level, � � for lump-sum taxes collected by the
government, and 
� for the level of real income. De�ning real balances by
�� � ���
�, �nancial wealth by �� � (�� +	�) �
�, and the gross rate
of in�ation by �� � 
��
��1, equation (2) can be written in real terms as

�� + �� + � � =
(1����1)

��
���1 +

���1
��

���1 + 
� (3)

The stream of real income arises from a �xed productive factor (B)
and real balances (so money facilitates transactions) and it follows a CES
type function

�(��) = [C��
� + (1� C)B�]

1�� , � � 1� C � (0� 1) (4)

Households maximize utility (1) subject to the two restrictions (2)-
(4), from which there is an optimal plan of intertemporal sequences
{������ 
�� ��}��=0. This leads to two conventional results given by the
Euler equation and the static equality between the marginal productivity
of money and its opportunity cost, given respectively, by

���
� = ����

�+1

��

��+1
(5)

� 0(��) =
�� � 1
��

(6)

Finally, in order to close the model, Benhabib et al. (2002) assume
that the central bank conducts monetary policy with an optimal interest
rate rule that obeys a feedback rule of the form

�� � � (��+�) = 1 + (�
� � 1)

³��+�

��
´ �
���1 , � = 0� 1 (7)

This function has several interesting points. Firstly, if we take � =
1 in equation (7) then �� = � (��+1) and this means that the central
bank sets forward-looking interest rate rules and if � = 0 then we have
contemporaneous interest rate feedback rules.1 Secondly, the feedback
rule above satis�es a set of restrictions that have been established in the
literature as commonly accepted:

1 In this paper, we will only discuss de case of forward-looking interest rates.
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• The elasticity of the feedback rule at �� is greater than unity (ac-
tually, equals to ����), which means that the central bank reacts
aggressively to in�ationary pressures near the target rate of in�a-
tion;

• Liquidity traps (or the zero bound on nominal interest rates) are
avoided due to the assumption that �(��) � 1;

• By assuming that �(��) = ����� the existence of a �xed point
consistent with the target rate of in�ation is assured.

In order to obtain a closed form solution to the forward-looking in-
terest rate rule version of the model, �rstly, we need to combine equation
(6) with (4), which leads to he following negative relation between output
and the nominal interest rate:

�� = � (
�) � �
0 � 0� (8)

Secondly, one has to use the Euler equation (5), the optimal interest
rate equation (7), and the general equilibrium condition 
� = ��, to �nally
arrive at a �rst order non-linear di�erence equation in output of the form:


�+1 = � (
�) = �
1
� 
�

μ
� (
�)

��1 (� (
�))

¶ 1
�

� � � 0� 0 � � � 1� (9)

where ��1 (·) is the inverse of the function � (·) � Finding an equilibrium
real allocation reduces to �nding a real positive sequence {
�}��N satisfy-
ing this last equation.

In order to proceed to the dynamical analysis of this di�erence equa-
tion or discrete map, we write down the explicit expression of �� So, since
we have

�� = � (
�) =
1

1� C
μ

�
� � (1� C)B�

C
�
�

¶��1
�

(10)

and as ��+1 = ��1 (� (
�)) = ��
μ
�� � 1
�� � 1

¶���1
�

� then

��+1 = ��

�
��������

1

1�C
�
�


�
� � (1� C)B�

C
�
�

�
�
��1
�
� 1

�� � 1

�
��������

���1
�
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By substituting these two expressions in (9) we obtain the following non-
linear one-dimensional map from which we can �nd the real allocation
equilibrium:


�+1 = � (
�) � �1��
�

�
�����������������������

1

1� C
μ

�
� � (1� C)B�

C
�
�

¶��1
�

��

�
��������

1

1�C
�
�


�
� � (1� C)B�

C
�
�

�
�
��1
�
� 1

�� � 1

�
��������

���1
�

�
�����������������������

1
�

�

(11)
with � � 0� 0 � � � 1� � � 1� 0 � C � 1� ���� � 1� �� � 1� �� � ��

The graphical representation of the map � is illustrate in Figure 1.
There are two equilibrium points, denoted by 
�� and 
�� . The active
steady state 
�� has a more interesting dynamical behavior, and a detailed
nonlinear analysis shows that this equilibrium point has a very complex
dynamics, from a stable equilibrium to chaotic orbit, when one or various
parameters are varied (in this paper we study only variations in one of
the parameters: �). We are interest in a small neighborhood around
the steady state, where the perfect-foresight equilibrium real allocations
remain stable. In order to obtain this we show that, for certain parameter
calibration, the map � is a typical unimodal map and this means that
the analysis of the unique critical point 
	 will characterize the global
behavior of the system. Hence, we obtain that 
�� is globally stable for
certain parameter calibration. Moreover, when the active �xed point
becomes erratic, we proceed in the next section to control the chaotic
motion in order to achieve stability for a larger set of system parameters.

2.2 Chaotic Dynamics

We have the following parameter calibration: � = 0�996� � = 1�5� � = �9�
C = 0�000352� B = 1� �� = 1�0103� �� = 1�0147� and let the parameter �
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Figure 1: The map � (
�) � the 45
 diagonal and the two equilibrium points

to vary in the interval (1�3� 1�55) �2 The bifurcation diagram of the map �
when � is varied in the above interval it is presented in Figure 2. The �rst
bifurcation point appears for � = 1�408��� and after this value a period-
doubling route to chaos takes place. The bifurcation diagram is typical of
a unimodal or a quadratic map and, hence, the period three orbit implies
chaos, following the Li—Yorke theorem. Actually, for any parameter value
after the bifurcation point of the 2� orbit, we have chaotic motion, which
can also be applied to the value of � after such bifurcation point.

Proposition 1 For the above parameter calibration and for 1�3 � � �
1�408 the active steady state 
�� is globally stable.

Proof. To prove this it is su�cient to recall that the map � is
unimodal in the invariant interval �� � = [� (
	)� �

2(
	)].3 The critical
point 
	� that is, the solution of the equation � 0 (
�) = 0� always converge
to the unique stable steady state of the map, in this case 
��� This is also
illustrate in Figure 3.

2 In the original paper [10], the parameter � is �xed at the 1�522 and te parameter
� is varied.

3Basically, a map is called unimodal if it has a unique critical point � in the interval
[���] and is decreasing (increasing) in the interval [���] and increasing (decreasing)
in the interval [���].
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The stability interval is lower bounded by 1�3, the value for which the
map � assumes real values, and is upper bounded by 1�408� that is, the
value where the �rst period doubling bifurcation appears, (����
�) = �1�
For any value within this interval, the passive �xed point is unstable.

Now, we �x � = 1�54� and we can observe from the bifurcation dia-
gram (Figure 2) that for this parameter value the active steady state is
chaotic. Namely, the equation � (
�) = 
� gives the two equilibria of these
di�erence equation, that is, 
�� = 0�9989977 and 
�� = 0�99949946 which
are shown in Figure 1. Both of them are unstable, since¯̄̄

¯̄
μ
��

�


¶
(���)

¯̄̄
¯̄ = 1�78858 � 1 and

¯̄̄
¯̄
μ
��

�


¶
(��� )

¯̄̄
¯̄ = 5�21621 � 1�

The unstable steady state 
�� will be stabilized in the next section, by
using OGY control technique.

3 Controlling Endogenous Cycles

We intend to show that chaotic dynamics may have a signi�cant im-
portance for economics not only on the modelling side, but also on the
normative side by giving a possible new dimension to economic policy.
To clarify this point we will apply the OGY method [40] to control the
chaotic motion that is produced in this model.

Let us note the map by � (
�� ��) in order to control the unstable
period one orbit by applying a tiny perturbation to �� which is assumed
as the parameter controlled by the government or the central bank.4 The
control strategy is the following: �nd a stabilizing local feedback con-
trol law which is de�ned on a neighborhood of the desired periodic orbit.
This is done by considering the �rst order approximation of the system
at the chosen unstable periodic orbit. The ergodic nature of the chaotic
dynamics of the model ensures that the state trajectory eventually enters
into the neighborhood. Once inside the neighborhood, we apply the sta-
bilizing feedback control law in order to steer the trajectory towards the
desired orbit.

For values of 
� close to the unstable �xed point 
� and for values of
�� close to ��� the map � can be approximated by the following linear
discrete time system

��+1 = 	�� +���� (12)

where �� = 
��
� and �� = ����� are the derivations from the nominal
values in standard control notation for states and input� The values 	

4We develop further this issue (why this parameter is the instrument of monetary
policy) in the next section.
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and � represent the derivatives of the map � with respect to the variable

 and to the control parameter � evaluated at the point (
�� ��), that is

	 =

μ
��

�


¶
(�����)

and � =

μ
��

��

¶
(�����)

�

Now according to OGY a linear state feedback

�� = ����

can be applied to system (12). It should be added that this control should
only be applied within a certain region

R
 = {
 : |
 � 
�| � �} � � � 0

around the �xed point, which it is called the control region. Then, the
system (12) will take the form

��+1 = (	 � ��)���

and thus the closed loop system is stable as long as

|(	 ���)| � 1�

Setting (	 � ��) = 0� then we have the pole placement technique and
obviously � = 	���

It was shown in the previous section that for � = 0�996� � = 1�5� � =
�9� C = 0�000352� �� = 1�0103� �� = 1�0147 and � = 1�54 the map �
possesses an unstable chaotic �xed point 
�� = 
� = 0�9989977���. We
�x these parameter values and consider that � is the control parameter
which is available for external adjustment but restricted to lie in some
small interval |����| � �� � � 0 around the nominal value �� = 1�54�
Since

	 =

μ
��

�


¶
(�����)

= �1�78858��� and � =

μ
��

��

¶
(�����)

= �0�0003162����

one obtains that

��+1 = (�1�78858 + 0�0003162�)���

which means that the parameter� may take values in the interval (2493�8098�
8818�5767) which is the solution to the stability inequality

|�1�78858 + 0�0003162�| � 1�
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Figure 4: (a) The chaotic unstable orbit to be controlled; (b) the controlled
orbit; and (c) the variation of the control parameter �

Obviously, if we choose the pole placement value, that is �1�78858 +
0�0003162� = 0, it follows that � = 5656�483238� For this value of the
control constant �� the unstable period one orbit is stabilized, as one
can easily see in Figure 4, panel (b). Panel (a) shows the randomly
chosen trajectory which we wish to steer towards the �xed point. In this
case we choose � = 0�1� and the variation of the parameter � is shown
in panel (c). The time span required to achieve control is very short,
independently of the initial condition, the moment when the control is
switched on (generally after the �rst 10 iterations) or the value of �.
Figure 5 illustrates control for several choices of the parameter � and
two di�erent initial conditions 
0 and 
00.

In the cases illustrated in Figures 6 and 7 we choose � = 0�02 and � =
0�001. The variations of the control parameters are very tiny |����| �
�, namely in these concrete cases 1�5327 � �� � 1�5446 and 1�5397 �
�� � 1�5404� From a purely mathematical point of view, this model is
quite easy to control and this is obvious from the two previous �gures,
where a relative short time span is required in order to achieve stabiliza-
tion, even when the permitted variation interval for the control parameter
is very small.
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Figure 6: Control with � = 0�02

4 Relevance for Economic Policy

The fundamental importance of optimal monetary policy, conducted in
accordance with active interest rules, is to reduce the amplitude of busi-
ness cycles and, by doing so, increasing economic welfare. It seems there-
fore ironic that a policy which is designed in principle to reduce or elimi-
nate business cycles is capable, by itself, to produce large and endogenous
�uctuations.

Benhabib et al. (2002) did not enter into the issue of policy measures
to remedy this drawback of active interest rate rules. In fact, in an earlier
version of the paper, they state that "the design of policies capable of
eliminating chaotic dynamics remains a subject for future research"5 In
what follows we will try to clarify some of the points related to this issue,
and we will concentrate on two fundamental points: (i) the relevance of
the present model as a possible guide to e�ective monetary policy; and
(ii) the relevance of chaotic dynamics (and chaos control) to economic
policy.

As far as the �rst point is concerned, it is unfortunate that the model

5From page 17 of a larger version of the paper, initially presented in 2001 at a
NBER meeting.
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put forward by Benhabib and associates is of little help to be a theoret-
ical reference for guiding optimal monetary policy. The reason is very
simple: one of the major results of the model, however totally ignored
by Benhabib et al., is totally at odds with the spirit of active interest
rate rules (Taylor rules) and basic economic intuition. This result can
be easily observed by a simple inspection of the bifurcation diagram in
Figure 2. This �gure shows the evolution of the stability of the model
with respect to the fundamental policy parameter (�). This parameter
gives the aggressiveness of the central bank towards in�ation pressures
near the target in�ation rate (��)� such that an increase in the value of �
represents less tolerance of the central bank towards in�ation. Therefore,
an increase in � should lead to an increase in the stability of the dynamics
of the model economy.

Unfortunately, this does not happen. In fact, it came out as a great
surprise, that once the bifurcation diagram is produced one can easily
�nd out that an increase in the policy parameter � leads to an increase in
instability following the already traditional period doubling bifurcation.
For low values of �, one may get a stable �xed point, and for higher
values it degenerates into period-two cycles, period—four, and so on, until
chaotic motion sets in. This occurs at the following value � � 1�408.
Therefore, the model, as it stands at the moment, is of little help for
optimal monetary policy.

On the second point above mentioned – as far as the practical rele-
vance of chaotic methods for economic policy is concerned – there have
been three questions raised about this issue:

• How many periods of time does the control require in order to take
place?

We have received some feedback arguing that, as the control of chaotic
dynamics usually takes a long period of time to take e�ect, then, the for-
mer is of little practical relevance for economic policy in the world we live
in today. This argument may be valid for speci�c chaotic motions, how-
ever, as far as most economic models are concerned it seems misleading.
In fact, in most control exercises we have undertaken using quarters as
a time index, as we do in the model discussed in this paper, the control
can take no more than just 5, 6 or 10 quarters, if the perturbation is
not too small. In Figure 8, we recall two control exercises. In the �rst
panel, it takes just 6 periods (quarters) if we accept a relatively not too
large perturbation (� = 0�1), while in the second panel it takes around
10 periods to have a successful control because the perturbation is much
smaller (� = 0�02). So the �rst conclusion concerning the relevance for
practical economic policy is this: if one produces a large perturbation to
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Figure 8: Time span required to achieve successful control: panel (a) with
a perturbation of � = 0�1; panel (b) with a smaller perturbation � = 0�02.

the system dynamics, then we have a relatively short period of time to
perform the control, if only a tiny perturbation is allowed, the time span
is certainly larger.

• How can one control a chaotic system if this is so sensitive so small
disturbances (mistakes)?

This is a point that is partially misdirected. It is precisely because
the system is so sensitive to small perturbations (mistakes), that one can
control it with techniques that can not be successfully applied to non-
linear nonchaotic systems. Contrary to what happens with these latter
processes, in chaotic dynamics we know that the orbits come back time
and time again to the neighborhood of the unstable �xed point. A small
perturbation can so be applied to force the system to remain at that
�xed point. With linear stochastic processes, if the �xed point is stable,
�uctuations are entirely due to exogenous and uncorrelated shocks. In
this case policy is totally useless, because nothing can be done to prevent
those shocks to occur. In this case, if a policy action is taken, then the
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�xed point is changed (not its stability, but rather its coordinates), which
does not happen in the case of controlling chaotic dynamics.

Nevertheless, there is a cost that has to be paid to cover for our
ignorance of the true initial conditions of a chaotic process. In the control
exercises we present in the paper we show that the fact that the ignorance
of the particular initial condition of the system does not prevent us to
obtain a successful control; however, the time span required to do so may
be very di�erent if the initial conditions are also very di�erent. In Figure
5 we choose two random initial conditions (
0� 
00)� the system could
be controlled, but for the same perturbations successful control requires
di�erent time spans.

Contrary to the two objections above, there is one side of chaos control
applied to economics that may raise serious questions on its empirical rel-
evance. As we saw in Figure 8, in order to control the endogenous �uctu-
ations, the central bank has force both an increase and a decrease (or vice
versa) in the short term interest rate in successive periods. Given what
we know from the behavior of central banks over the last two decades, it
seems to us that this behavior of the control rule does not comply in any
way with the evidence of recent monetary policy in advanced economies.
Nevertheless, we are not sure that techniques of chaos control (others than
the OGY technique) are not able to overcome this shortcoming. This is
left for future investigation.

• In dynamic general equilibrium models, when endogenous �uctua-
tions exist, the associated policy advice is laissez—faire.

In a paper which particular focus is the link between chaos and eco-
nomic policy, Bullard and Butler (1993) put the argument forward in a
very clear fashion:,

”It remains that there is no published example of a well speci-
�ed, optimizing model, obeying baseline assumptions, where Pareto—
inferior endogenous �uctuations exist. The reason for this seems
clear — one must allow for some type of market incompleteness to
justify government intervention under a criterion of Pareto optimal-
ity ... [therefore] unless one is willing to accept variations on the
baseline assumptions ... the preliminary conclusion seems to be
that when endogenous �uctuations exist in optimizing models, the
associated policy advice is laissez—faire” (page 859).

An identical point is also put forward by Barnett et al. (1999). We
argue that this view of economic policy in nonlinear general equilibrium
models is based on a misconception of chaos in general, and on the control
of chaos in particular.
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The fact that chaotic systems have the fundamental characteristic of
topological transitivity, which is not shared by nonlinear non—chaotic sys-
tems, one can control a chaotic system without changing its fundamental
topological characteristics, as we showed above. The implications from
topological transitivity are simple: by applying tiny perturbations to the
system, we can stabilize an unstable �xed point, turning it into a stable
�xed point; or we could also change an unstable orbit of period two into
a stable periodic orbit of period two (but not of period three or of period
one). This is in clear contrast to what happens with the control of non-
linear non—chaotic models, where the control in fact alters not only its
stability but also the coordinates of �xed point (if there is one).

Therefore, if the �xed point remains the same, only its locally stability
is altered, it seems questionable to argue, as Barnett et al. and Bullard
and Butler have done, that cycles around an unstable �xed point are
Pareto superior to a stable trajectory determined by the exactly same
�xed point. But we understand the direct comparison that those authors
establish between the case of a linear stochastic process and nonlinear
chaotic one. In fact, the force of such argument implies that the irregular
motion around the linear trend would lead to a higher Pareto ranking
than any e�ort by the public authorities to reduce the amplitude of the
exogenous cycles, because these cycles are not caused by any internal
force of the economic process. Therefore, in linear stochastic processes,
public authorities should intervene whenever there is some form of market
failure which prevent private agents to quickly react to exogenous shocks
by changing prices immediately (of labour, goods and services or interest
rates).

However, this is not the case in chaotic economic dynamics. In this
case, it is the very behaviour of economic agents that causes the economy
to follow erratic cycles and, therefore, if these cycles can be somehow
reduced or prevented economic agents do not have to react to the ups
and downs of economic activity and their economic welfare is not altered:
not reduced, nor increased.

5 Concluding Remarks

In this paper we discussed optimal monetary policy in a model which
produces chaotic dynamics. Since the early 1990s we have witnessed an
increasing consensus in the conduct of modern monetary policy. This
new framework is a natural extension of the seminal idea developed by
Taylor (1993), in which the central bank should conduct monetary policy
through an aggressive and publicly known rule (Taylor Rules). The
fundamental objective of monetary policy in such framework is to reduce
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as much as possible the amplitude of business cycles, and by doing so
increasing economic welfare.

However, over the last two/three years, Benhabib, Schmitt-Grohé and
Uribe have shown in a series of papers that active interest rules may
lead to very unexpected consequences: indeterminacy, de�ation traps,
large cyclical instability, and even chaotic dynamics. Therefore we have
a puzzle: the basic objective of active interest rules is to stabilize the
economy, but instead they lead to irregular cycles even in the absence of
any form of exogenous shocks.

We wish to clarify some issues related to the use of chaos control to
reduce or eliminate business cycles. In particular, we make four basic
points: (i) the model developed by Benhabib and associates su�ers from
serious drawbacks to be used as a theoretical benchmark to guide optimal
monetary policy, as the more aggressive the central bank becomes, the
more unstable the economy will be; (ii) the time span required to achieve
successful control is generally small; (iii) ignorance about the true state
of initial conditions are not a serious impediment to obtain control of
the chaotic dynamics in the model; (iv) we argue that the conventional
view of economic policy in nonlinear general equilibrium models – when
endogenous �uctuations exist in optimizing models, the associated policy
advice is laissez—faire – is based on a misconception of chaos in general,
and on the control of chaos in particular.
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